

Contribution ID: 6

Type: Contributed Talk

PAUL SCHERRER INSTITUT

Resolving Ultrafast Heating of Dense Cryogenic Hydrogen

Wednesday, 17 September 2014 09:35 (25 minutes)

We performed an XUV-pump XUV-probe experiment on warm dense hydrogen with sub-picosecond time resolution at the XUV free-electron laser facility (FLASH) at DESY (Hamburg). Ultra-fast impulsive electron heating was initiated by a \leq 300 fs short photon pulse at 92 eV energy. A second XUV pulse probed jitter-free the heated sample via x-ray scattering at variable time delays. We showed that the initial molecular structure dissociates within (0.9 \pm 0.2) ps. This allowed to infer the energy transfer rate between electrons and ions. We evaluated Saha and Thomas-Fermi ionization models in radiation hydrodynamics simulations, predicting plasma parameters that were subsequently used to calculate the static structure factor. A conductivity model for partially ionized plasma was validated by two-temperature density functional theory coupled to molecular dynamic simulations, and agreed with our experimental data. Our results [1] provide important insights and the needed experimental data on transport properties of dense plasmas.

[1] U. Zastrau et al., PRL 112, 105002 (2014)

Primary author: Dr TOLEIKIS, Sven (DESY)

Presenter: Dr TOLEIKIS, Sven (DESY)

Session Classification: Matter under extreme Conditions

Track Classification: Matter u. extreme Conditions