XMDYN: Modeling radiation damage of XFEL irradiated samples

16.09.2014

Zoltan Jurek, Beata Ziaja, Robin Santra

Theory Division,

Center for Free-Electron Laser Science, DESY

Introduction – modeling of matter at high x-ray intensities

> XMDYN – our approach

> Applications

- C60 @ LCLS
- Rare gas clusters @ SACLA

Validation of the model

- Single Molecule Imaging Start-To-End simulation (European XFEL)

> Summary

Introduction

Introduction

> Hard X-ray Free-Electron Lasers: ultrashort, intense pulses

E _{ph} ~ 0.510 keV	T _{pulse} ~ 10100fs	$N_{ph} \le 10^{13}$	$I \le 10^{21} \text{ W/cm}^2$
-----------------------------	------------------------------	----------------------	--------------------------------

Predominant process due to hard x-ray-matter interaction: photoeffect

 \rightarrow highly ionized samples \rightarrow **ultrafast dynamics** (sample damage)

> **Theoretical description** of the time evolution of the sample is needed

No `ab initio` approach for large highly excited systems

Models developed include

- parameters from quantum calculations (rates, cross sections, ...)
- classical physics (real space dynamics), simplifying assumptions
- > Model validation is needed, e.g., via spectroscopy data

Modeling spectroscopy experiments – a challenge

- > Large number of particles (atoms + electrons)
- System is highly excited (large number of ionizations)
- Long time (>ps) propagation (typical time-step ~as)
- > Spatial intensity profile of the beam \rightarrow volume integrated signal

XMDYN – our particle approach

Modeling with XMDYN

Atomistic Model + Molecular Dynamics (MD) in-house code (core: Jurek, Faigel, Tegze, Eur. Phys. J. D 29, 217 (2004))

- > Bound electrons → Occupation numbers Inner-shell processes (ph.eff./Auger/fluor.): Monte Carlo Rates by XATOM package (Sang-Kil Son, Robin Santra)
- > Real space dynamics: MD
 - atoms/ions and (quasi-) free electrons: classical particles
 - classical force fields: Coulomb ; Newton's equations
- > Phenomena due to the molecular environment
 - chemical bonds
 - secondary ionizations
 - molecular Auger effect

Mod		1
IVIOU	XATOM – an integrated toolkit for x-ray and atomic physics	
Ate	Sang-Kil Son, Robin Santra	
	– Ab initio calculated	.))
> Bo	photoionization cross section Auger and Coster-Kronig decay rate fluorescence rate	6
Ra	elastic x-ray scattering cross section dispersion correction for elastic x-ray scattering cross section inelastic x-ray scattering cross section	P
> Re	shake-off branching ratio effects of plasma environment	
_	 Ionization dynamics is described by rate equations 	
> Ph	 Time-dependent populations obtained) e-
-	pathways to reach high charge states scattering patterns including electronic radiation damage photoelectron / Auger electron / fluorescence spectra	onization
	Zoltan Jurek XMDYN: Modeling radiation damage of XFEL irradiated samples Page 8	DESY

Modeling with XMDYN

Atomistic Model + Molecular Dynamics (MD) in-house code

(core: Jurek, Faigel, Tegze, Eur. Phys. J. D 29, 217 (2004))

XMDYN – Applications C₆₀ @ LCLS

C₆₀ @ LCLS – The Experiment

> Nora Berrah (WMU) et al.

C₆₀ **molecules** irradiated **at LCLS** (2012)

E_{photon} = 485 / 600 / 800 eV

```
T_{pulse} = 7 / 20 / 60 / 150 \, fs
```


Fragment M/Q distributions and energy spectra were measured

C₆₀ @ LCLS – Strong ionization (high intensity) case

> Explosion in the focus

Video: http://www.desy.de/infos___services/presse/pressemeldungen/2014/pm_270614/index_ger.html

-40.0fs

B. Murphy et al., Nat. Commun. 5 4281 (2014)

C₆₀ @ LCLS – Strong ionization (high intensity) case

> Atomic ions – experimental and volume integrated theoretical yields

Zoltan Jurek | XMDYN: Modeling radiation damage of XFEL irradiated samples | | Page 13

C₆₀ @ LCLS – Strong ionization (high intensity) case

> Atomic ions – kinetic energy spectra

Theory: no parameter fitting!

B. Murphy et al., Nat. Commun. 5 4281 (2014)

C₆₀ @ LCLS – More physics

> Experiment: Nora Berrah

- B. F. Murphy, T. Osipov, L. Fang, M. Mucke, J.H.D. Eland, V. Zhaunerchyk, R. Feifel, L. Avaldi, P. Bolognesi, C. Bostedt,
- J. D. Bozek, J. Grilj, M. Guehr, L. J. Frasinski, J. Glownia, D. T. Ha,
- K. Hoffmann, E. Kukk, B. K. McFarland, C. Miron, E. Sistrunk,
- R. J. Squibb, K. Ueda

> Theory: CFEL Theory Division

Z. Jurek, S.-K. Son, R. Santra

XMDYN – Applications Rare gas clusters @ SACLA

Argon clusters @ SACLA – The Experiment

Kiyoshi Ueda (Tohoku Univ.) et al.

Ar, Xe clusters irradiated at SACLA (2012)

 $E_{photon} = 5 keV$, $T_{pulse} = 10 fs$

size ~ 100 ... 10000 atoms

Electron kinetic energy spectra were measured

SCIENCE

> Experiment: Kiyoshi Ueda

T. Tachibana, Z. Jurek, H. Fukuzawa, K. Motomura,

- K. Nagaya, S. Wada, P. Johnsson, M. Siano, S. Mondal, Y. Ito,
- M. Kimura, T. Sakai, K. Matsunami, H. Hayashita, J. Kajikawa, X.-J. Liu,
- E. Robert, C. Miron, R. Feifel, J. P. Marangos, K. Tono, Y. Inubushi,
- M. Yabashi, M. Yao
- > Theory: CFEL Theory Division
 - Z. Jurek, S.-K. Son, B. Ziaja, R. Santra

XMDYN – Applications Low intensity case: C₆₀ @ synchrotron

Irradiated C₆₀ – Low intensity (synchrotron) case

Electron kinetic energy spectrum after single photoionization

Z. Jurek, B. Ziaja, R. Santra, J. Phys. B 47 124036 (2014)

SCIENCE

XMDYN – Applications Single Molecule Imaging Start-To-End (S2E) Simulations at the European XFEL

Single Molecule Imaging S2E Simulations – Collaboration

> Project Leader: Adrian P. Mancuso

Name	Organization	Role
Chun Hong Yoon	European XFEL & CFEL	Fast diffraction calculation, interfaces, much more
Liubov Samoylova	European XFEL	X-ray optics, propagation code
Alexey Buzmakov	Institute of Crystallography	Propagation code, interfaces
Oleg Chubar	Brookhaven National Lab	SRW Propagation code
Zoltan Jurek	CFEL	Photon–Matter Interaction Simulation
Sang-Kil Son	CFEL	Photon–Matter Interaction Simulation
Robin Santra	CFEL	Photon–Matter Interaction Simulation
Beata Ziaja	CFEL	Photon–Matter Interaction Simulation
Markus Kuster	European XFEL	Detector Effects
Julian Becker	DESY	Detector Effects
Heinz Graafsma	DESY	Detector Effects
Mikhail Yurkov	DESY	Source photon field simulations
Evgeny Schneidmiller	DESY	Source photon field simulations
Krzysztof Wrona	European XFEL	Scientific Computing, Image Reconstruction
Burkhard Heisen	European XFEL	Scientific Computing, Image Reconstruction
Duane Loh	NUS	Orientation Algorithms, Image Reconstruction
Andrew Aquila	European XFEL	X-ray optics, image reconstruction
Klaus Giewekemeyer	European XFEL	Scientific Computing, Image Reconstruction
Adrian Mancuso	European XFEL	Coordinator, Image Reconstruction
Thomas Tschentscher	European XFEL	European XFEL Director for optics and SPB

A. P. Mancuso, et al, Technical Design Report: Scientific Instrument Single Particles,

Clusters, and Biomolecules (SPB), European XFEL (2013), doi:10.3204/XFEL.EU/TR-2013-004 Zoltan Jurek | XMDYN: Modeling radiation damage of XFEL irradiated samples | | Page 23

Summary

- > XMDYN: modeling the dynamics of nanoparticles exposed to XFEL pulses.
- > XMDYN applications: irradiated rare gas cluster systems and irradiated C₆₀ molecules.
- XMDYN is used for Single Molecule Imaging studies, e.g. in the `Start to End Simulation Project` at the European XFEL.
- Further imaging and spectroscopy applications are planned and in progress

To be continued ...

