Geant4 Simulations Framework for nEDM@SNS

Jed Leggett
Contributions From nEDM@SNS Simulations Team

Outline

- Overview of Geant4
- Geant4 simulations written by nEDM@SNS simulations team.
- Integrating nEDM Geant4 simulations into a unified framework.
- SNS Moderator Simulations.
- Running Geant4 in an HPC Environment.

Overview of Geant4

- Geant4 (for GEometry ANd Tracking) is a platform for "the simulation of the passage of particles through matter," using Monte Carlo methods.
- It is the successor of the GEANT series of software toolkits developed by CERN, and the first to use object oriented programming (in C++).
- Development, maintenance, and user support are taken of care by the international Geant4 Collaboration.
- Application areas include high energy physics and nuclear experiments, medical, accelerator and space physics studies.

^{*}Graphics from Geant4 Collaboration.

Geant4 for nEDM

Pros

- Extensive physics processes (no need to re-invent the wheel).
- Robust geometry package.
- Large community support.
- Open source (Not owned by any country)
- Object Oriented design allows for extensibility.
- Currently being rewritten to include large levels of parallelism for many core architectures (Intel MIC, GPUs, etc.) -> Geant5.

<u>Cons</u>

- Learning curve.
- Large code base (>1M LOC) & class templating make Geant4 a "black box" to most.
- Lack of validation for low energy neutron scattering (although this is improving).

Simulations for nEDM@SNS

In this talk (all Geant4 based)

- SNS Cold Neutron Beam Transport Wolfgang Korsch
- Neutron Activation + UCN Production Vanya Logashenko, Jed Leggett, Vince Cianciolo, Dipangkar Dutta
- Central Detector Response Brad Plaster, Takeyasu Ito
- Light Collection Zach Raines, Ameya Kolakar, Jed Leggett

Not In this talk

- Geant4 3He Dressed Spin Steve Clayton
- Geometric Phase Ricardo Schmidt
- Multiple Stand-Alone MC Takeyasu Ito
- Others That I'm Forgetting

Sample of Simulations for nEDM@SNS

Cold Neutron Beam Transport

- Simulations start at entrance of neutron guide.
 - Uses positions (x, y) and velocities v = (vx, vy, vz) → θx, θy from MCNP/McStas file (started at moderator).
- Transport neutrons (8.9 Å) to EDM targets.
 - Use measured non-magnetic and magnetic guide reflectivities (fits to data)

^{*}Wolfgang Korsch - University of Kentucky

Cold Neutron Beam Transport

x, y, θ_x , θ_y at EDM targets

Phase Space of outgoing neutrons is passed to other simulations.

^{*}Wolfgang Korsch - University of Kentucky

Neutron Activation

<u>Vanya</u>

- Detailed model of the nEDM central detector geometry.
- Neutron activation from Al & Mn was demonstrated to be small (~20 Hz)

<u>Jed</u>

 Phase space from neutron guide simulations used with geometry model to simulate neutron activation of electrode coating materials.

UCN Production

• In order to correctly simulate neutron scattering for background calculations, a custom Geant4 process was created for neutron scattering from single phonons in 4He.

Analytical

Simulation

 As a by product, UCN production rates could be estimated.

Neutron Activation

- In order to validate the simulation as well as possible, we extracted several parameters from the simulation and checked them against stand-alone MC simulations.
- The number of activated nuclei for a mono-isotopic material exposed to a instantaneous, monoenergetic field of neutrons can be calculated using the following formula.

$$N_{act} = N_{in} \frac{f_{scat} N_{cross}}{f_{shield}} \frac{\sigma_{th}}{v/v_{th}} \frac{\rho N_A}{A} \frac{t}{\langle \cos(\theta) \rangle}$$

Exposure-specific

Geometry-specific Geometry-specific Geometry-specific

Material-specific

Known

Material-specific

Known

Material-specific Geometry-specific

- N_{in} is the number of incident neutrons.
- f_{scat} is the fraction that scatter.
- N_{cross} is the average number of times a neutron crosses the material.
- f_{shield} is the fraction of neutrons shielded from the material.
- σ_{th} is the material's capture cross section at thermal energies.
- v/v_{th} is the ratio of the neutron velocity to thermal velocity.
- ρ is the material density.
- N_A is Avagadro's number.
- A is the material's atomic number.
- t/ < cos(θ) > is the average pathlength through the material (the thickness corrected for the average angle of incidence).

Parameters were extracted from the Geant4 simulation and verified with a Stand-Alone MC

Parameter		GEANT	SMC
	Front Cell Wall	6.7%	7%
f_{scat}	Cell Helium	2.5%	2%
	Back Cell Wall	6.1%	6.4%
	Total	15.3%	15.4%
N_{cross}		3.3	3.7
f_{shield}		2.7	2.7 * (1.8/2.1) = 2.3
$1/<\cos(\theta)>$		2.5	2.1
$\mathcal{F} = \frac{f_{scat}N_{cross}}{f_{shield} < \cos(\theta) >}$		0.47	0.52

Increases to 1.33 w/ realistic phase space.

Neutron Activation

To get the number of background counts we need to know the probability for produced γ's to pass background cuts.

$$N_{bkd} = N_{act}N_{\gamma} \otimes \mathcal{P}(E_{\gamma})$$

This can be obtained by randomly generating gammas on the surface of the electrodes in the central detector simulation and varying the energy.

 $P(E_{\gamma} = 412 \text{ keV}) = 0.76\%$, absolute normalization is somewhat position-dependent, shape not so much.

Neutron Activation

- Initial formula was for mono-isotopic samples and instantaneous exposures.
- More general formula:

$$\mathcal{R}_{bkd}(0) = \frac{1}{2} \frac{\Phi \mathcal{F} N_A t}{v/v_{th}} \sum_{i} \frac{\sigma_{th,i} \rho_i}{A_i} N_{\gamma,i} \otimes \mathcal{P}(E_{\gamma}) \left[\underbrace{(1 - \exp(-t_f/\tau_i))}_{1 - \exp(-t_c/\tau_i)} \underbrace{\frac{1 - \exp(-t_c/\tau_i)^{N_c + 1}}{1 - \exp(-t_c/\tau_i)}}_{\text{Decay of short-live}} \underbrace{\exp(-t_w/\tau_i)}_{1 - \exp(-t_c/\tau_i)} \right]$$

Sum over isotopes

Saturation of build-up for short-lived isotopes

Decay of short-lived isotopes between shutter closing and start of run

	$\mathcal{R}(0)$ (Hz/cell)	R(0) (Hz/cell)
Coating	(Perfect Masking)	(No Masking)
Gold	130	273
ITO (nat.)	117	242
ITO (In-113)	13	28
Cu	1.2	2.6

Table 5: Final results for 50 nm coatings, as described in the text.

Build-up of longlived isotopes over multiple run-cycles

Sample of Simulations for nEDM@SNS

Measurement Cell Simulation

Measurement Cell Simulation

Rate Function

Events generated according to rate function:

capture, β-decay, UCN wall loss

ambient gamma, cosmic-ray (time-independent)

where number of surviving neutrons N(t) is :

$$N(t) = N_0 \exp \left[-\Gamma t - \Gamma_{n,3} P_{n,0} P_{3,0} e^{-\Gamma_p t} \left(\frac{-\Gamma_p \cos(\omega t + \phi) + \omega \sin(\omega t + \phi)}{\Gamma_p^2 + \omega^2} \right) \right]$$

$$\approx N_0 e^{-\Gamma t} \left[1 - \frac{\Gamma_{n,3}}{\omega} P_{n,0} P_{3,0} \sin(\omega t + \phi) \right]$$

$$\sim \frac{1/400}{2\pi \times 9.8} \sim 4 \times 10^{-5}$$
B. Plaster

$$\begin{split} \Gamma &= \Gamma_{n,3} + \Gamma_{\beta} + \Gamma_{\text{wall}} \\ \Gamma_{n,3} &= 1/\tau_{n,3} \\ \Gamma_{\beta} &= 1/\tau_{\beta} \\ \Gamma_{\text{wall}} &= 1/\tau_{\text{wall}} \\ \Gamma_{P} &= \frac{T_{2,n} + T_{2,3}}{T_{2,n}T_{2,3}} \end{split}$$

activation

(time-dependent)

Measurement Cell Simulation

Timing and Photoelectron Spectra

Mock Data Challenge

- A data set containing 10⁹ events was generated for a "Mock Data Challenge".
- Analyzers had to find a hidden nEDM on the 10^{-27} e- cm level.

Sample of Simulations for nEDM@SNS

Light Collection Simulation

- Originally developed by Zach Raines @ Boston Univ.
- Includes TPB wavelength shifting of 80 nm scintillation light.
- Implements novel geometry methods developed by Peter Gumplinger of Triumf to realize "bent" light guides.

Light Collection Simulation

- Recently extended to include wavelength shifting fibers and silicon photomultipliers in Light Collection test stand @ ORNL.
- TPB process modified to include production of blue light outside of optical medium.
- Currently being benchmarked against optical response postprocessor.

Integrated Simulations Framework

Goals

- Curate code developed over the last decade for continued use by the collaboration.
- Create highly modularized geometry to accommodate major design changes.
- Facilitate streamlined workflows.
- Reduce learning curve for new simulations team members.

Strategy

- Migrate to modern version control using git.
- Recode all geometry files using approach of Peter Gumplinger.
- Standardize I/O classes for both online and offline I/O.
- Implement vast array of messenger classes to maximize runtime flexibility.

- Due to Export Control concerns with MCNP, we were funded to investigate the feasibility of using Geant4 for neutron moderator simulations.
- We implemented a simplified geometrical model of the SNS target and top downstream moderators.

Simulations of BL-14 brightness showed reasonable agreement with MCNPX.

Geant4

MCNPX

Success of our simple model led the SNS group to develop a full Geant4 model.

We are currently working with the SNS group and the Geant4 collaboration to perform a detailed comparison of all low energy neutron scattering kernels in Geant4 and MCNPX.

Geant4 On Titan

- As part of our SNS work, we were allotted time on the Titan Supercomputer.
- We were able to implement an MPI layer to parallelize across ~10,000 cores.

Conclusion

- Geant4 is a versatile toolkit that has many areas of application for nEDM simulations.
- Once a general simulations framework is built, it can be made extremely user friendly through the creation of customized runtime commands.
- Geant4 will continue to evolve to take advantage of the next generation of computer hardware.