

BILFING

Superconducting undulators: experience from ANKA

<u>S. Casalbuoni</u>, S. Gerstl, N. Glamann, A. Grau, T. Holubek, C. Meuter, D. Saez de Jauregui, R. Voutta ANKA, KIT C. Boffo, Th. Gerhard, M. Turenne, W. Walter Babcock Noell GmbH

www.kit.edu

Babcock Noell GmbH

Outline

- Motivation R&D of SCIDs
- SCU14 demonstrator
- Ongoing collaboration with BNG:
 - SCU15DEMO
 - SCU20
 - SCUW18-54
- HTS SCUs
- Tools and instruments for R&D
- Summary

Superconducting undulators: experience from ANKA Sara Casalbuoni, BeMa 2014, Bad Zurzach, Switzerland

Motivation R&D of scIDs

Develop SCUs for ANKA and low emittance light sources

With respect to permanent magnet undulators SCUs can generate :

- Harder X-ray spectrum
- Higher brilliance X-ray beams

Why? Larger magnetic field strength for the same gap and period length

S. C. et al., IEEE Trans. on Appl. Supercon. 4101305, Vol. 24-3 (2014)

IVU= in-vacuum undulator CPMU= cryogenic permanent magnet undulator SCU=superconducting undulator

	IVU* (SLS)	CPMU [†] (DLS)	CPMU PrFeB [#]	SCU NbTi wire**	SCU NbTi APC ^{††}
λ _u [mm]	19	17.7	15	15	15
# of periods	105	112	133	133	133
magn. gap [mm]	5	5.2	5.2	6	6
B [T]	0.86	1.04	1.00	1.18	1.46
К	1.53	1.72	1.4	1.65	2.05

*F. Bødker et al., EPAC06 [†]C.W. Ostenfeld & M. Pedersen, IPAC10 [#]M.E. Couprie et al., FLS2012 **D. Saez de Jauregui et al., IPAC11 ^{††}T. Holubek et al, IPAC11

Simulations performed with SPECTRA§

§T. Tanaka and H. Kitamura, J. Synchrotron Rad. 8, 1221 (2001).

ANKA Synchrotron Radiation Facility

Motivation R&D of scIDs

At ANKA large vacuum gap 7 mm instead of 5 mm longer period lengths

Simulations performed with SPECTRA[§] [§]T. Tanaka and H. Kitamura, J. Synchrotron Rad. 8, 1221 (2001). SCU20 has larger brilliance and flux than SCU15

vacuum gap = 7 mm

	CPMU [†] (DLS)	APS SCU0*	SCU15**	SCU20 ^{††}
λ _u [mm]	17.7	16	15	20
# of periods	87	20	102	77
B [T]	0.71	0.64	0.70	1.46
К	1.17	0.96	0.98	2.20

[†]C.W. Ostenfeld & M. Pedersen, IPAC10

*Y. Ivanyushenkov et al., IEEE Trans. on Appl.

Supercon. 4102004, Vol. 24-3 (2014)

**D. Saez de Jauregui et al., IPAC11

⁺⁺ S. C. et al., IEEE Trans. on Appl.

Supercon. 4101305, Vol. 24-3 (2014)

ANKA Synchrotron Radiation Facility

SCU14 demonstrator

Proof of principle of scu technology first time worldwide demonstrated at ANKA (2005) developed in collaboration with ACCEL

2.0

1.5

1.0

0.5

0.0

10¹⁴Phot./s /mm²/0.1%BW

- Period length: 14 mm
- Periods: 100
- Conduction cooling
- NbTi coils

Main issues:

- Reduction of peak field on axis B of ~30% from LHe 0.55 T to conduction cooling 0.4 T
- Performance in ANKA limited by too high beam heat load: in user operation B = 0.3 T

Outcome used:

•to measure beam heat load to a cold vacuum chamber at ANKA

•to improve the design of next generation sc undulators

R. Rossmanith et al., SRI 2006, AIP-Conf. Proc. 301-304 Vol. 879 (2007).

10

8

Energy (keV)

6

Measured

Calculated

ANKA Synchrotron Radiation Facility

12

14

SCU14 demonstrator

ANKA Synchrotron Radiation Facility

Beam heat load studies

Beam heat load observed cannot be explained by synchrotron radiation from upstream bending and resistive wall heating. S. C. et al., PRSTAB2007

Possible beam heat load source: electron bombardment of the wall, beam dynamics to be studied

Ongoing collaboration of ANKA and BNG to develop SCUs for ANKA and low emittance light sources

7

Superconducting undulators: experience from ANKA Sara Casalbuoni, BeMa 2014, Bad Zurzach, Switzerland

Coils have been pre-bent at room temperature to try to compensate the bending measured at 4 K

Sara Casalbuoni, BeMa 2014, Bad Zurzach, Switzerland

SCU15DEMO: tests in conduction cooling

- FAT completed
- Cooling time 7 days
- Warming up 4 days
- Ramping time < 600 s</p>

Current stability of main coils at max. current 150 A and correction coils successfully tested for 6 days

Movable vacuum chamber
 7 mm – 15 mm: successful
 vacuum test < 3 x 10⁻¹⁰ mbar in
 cold conditions

- Next steps :
 - Installation in ANKA 12.2014-1.2015
 - Tests with beam in 2015

SCU20

Lessons learned from previous development of 1.5 m long undulator coils: round wire, low carbon stainless steel, blocks ~0.15 m, racetrack, new winding scheme: from one groove to the next changing winding direction

SCU20: Achievements of Mockup 2

SCUW18-54

A device to switch between a 18 mm period length undulator and a 54 mm wiggler.

Applications:

•High brilliance of the undulator from 6 to 15 keV for imaging,

•wiggler mode for higher photon energies to perform phase contrast tomography.

First experimental demonstration of period length switching for scIDs

Built by BNG

A. Grau et al., IEEE Trans. on Appl. Supercond. 1596-1599 Vol. 21-3 (2011)

Conduction cooled superconducting switch

T. Holubek et al., IEEE Trans. on Appl. Supercond. 3800104 Vol. 23-3 (2013) Aim:

use only one power supply instead of several for the different circuits, reducing the thermal input to the device

Applications: •period length switch (i.e., SCUW) •active shimming

Minimum power dissipation of 200 mW per heater, demonstrated in an ad hoc conduction cooling setup in CASPER I Minimum power dissipation can be further reduced: Ongoing additional tests in CASPERII

Bundesministerium für Bildung und Forschung

Application of other materials: HTS tape

HTS tape stacked undulator

S. Prestemon et al., IEEE Trans. on A Supercond. 1880-1883 Vol. 21-3 (201

KIT internal collaboration: ANKA with ITEP

Etching using Trumpf picosec YAG - IR laser, programmable beam control used for Roebel cables

Groove formation very reliable applying laser No contamination of groove detected (SEM)

T. Holubek et al., IEEE Trans. on Appl. Supercond. 4602204 Vol. 23-3 (2013)

ANKA Synchrotron Radiation Facility

Engineering current density (kA/mm²)

Tools and instruments for R&D: CASPERI

To test:

- New winding schemes
- New superconducting materials and wires
- New field correction techniques

•Operating vertical test in LHe of mock-up coils with maximum dimensions 35 cm in length and 30 cm in diameter

•The magnetic field along the beam axis is measured by Hall probes fixed to a sledge moved by a linear stage with the following precision $\Delta B < 1mT$ and $\Delta z < 3 \mu m$ E. Mashkina et al., EPAC08

Tools and instruments for R&D: CASPERII

A. Grau et al., IEEE Trans. on Appl. Supercond. 9001504 Vol. 22-3 (2012)

Tools and instruments for R&D: CASPERII

B(H)

ANKA Synchrotron Radiation Facility

SCU20 Mockup 2

ANK

Tools and instruments for R&D: COLDDIAG

Cold vacuum chamber for diagnostics to **measure the beam heat load** to a cold bore in different synchrotron light sources

The beam heat load is needed to specify the cooling power for the cryodesign of superconducting insertion devices

The **diagnostics** includes measurements of the:

- heat load
- pressure
- gas composition
- electron flux of the electrons bombarding the wall

In collaboration with CERN: V. Baglin LNF: R. Cimino, B. Spataro University of Rome ,La sapienza': M. Migliorati DLS: R. Bartolini, M. Cox, E. Longhi, G. Rehm, J. Schouten, R. Walker MAXLAB : Erik Wallèn STFC/DL/ASTeC: J. Clarke STFC/RAL: T. Bradshaw

S. Gerstl et al., PRSTAB, 17, 103201 (2014)

Significant discrepancy compared to theoretical expectations ... S. C. et al., JINST 7 P11008 (2012)

Summary

- Advantages of SCIDs on permanent magnet IDs
- Experience with SCU14 demonstrator
- SCU15DEMO achievements:
 - Mechanical tolerances at RT < 50 μm</p>
 - 1.5 m long coils successful test in LHe and in conduction cooling
 - Unique movable UHV vacuum chamber at 4 K: gap 7-15 mm
 - Potential spectral performance advantages on CPMU and on APS-SCU0 to be demonstrated with test in the ring
- SCU20 Mockup 2 achievements:
 - Mechanical tolerances at RT < 60 μm</p>
 - Test in LHe and in conduction cooling 400 A reached without quench (nominal current 380 A)
 - Spectral performance advantages on CPMU
- SCUW18-54:
 - Demonstrated feasibility of period length switching
 - Successful studies on conduction cooled switch
- Development of our own tools for R&D on SCIDs:
 - CASPER II: cryostat succesful factory acceptance test, preliminary results of magnetic field measurements
 - COLDDIAG measured beam heat load to a cold bore installed in the Diamond Light Source

Backup slides

Superconducting undulators: experience from ANKA Sara Casalbuoni, BeMa 2014, Bad Zurzach, Switzerland

Outlook

Superconducting undulators: experience from ANKA Sara Casalbuoni, BeMa 2014, Bad Zurzach, Switzerland ANKA Synchrotron Radiation Facility

ANK

ANKA Synchrotron Radiation Facility

ANKA

Experience at ANKA: SCU14 demonstrator

Proof of principle of scu technology first time worldwide demonstrated at ANKA (2005)

- Period length: 14 mm
- Length: 100 periods
- NbTi coils

Outcome used:

to measure beam heat load to a cold vacuum chamber at ANKA
to improve the design of next generation sc undulators

C. Boffo et al., IEEE Trans. on Appl. Supercond. 1756-1759 Vol. 21-3 (2011)

ANK

SCU15DEMO: beam vacuum chamber

ANKA Synchrotron Radiation Facility

Challenges:

- Must withstand UHV radiation hard environment
- Resistive losses must be kept as low as possible
- Must move: it needs to open to 15 mm during electron beam injection and energy ramping in the ANKA storage ring

The chamber has been manufactured and successfully withstood the vacuum test reaching $< 3 \times 10^{-10}$ mbar in cold conditions

SCU20

- Lessons learned from previous development of 1.5 m long undulator coils:
 rectangular wire 0.54 mm x 0.34 mm
 round wire diameter 0.76 mm
 - cobalt-iron yoke

low carbon stainless steel

plates made of one pole and one groove

 $blocks\simeq 0.15\ m$

- Optimization of coils performance by varying winding pack geometry to minimize:
 - required wire current to achieve specified peak B on axis
 - magnetic field on the conductor at maximum required wire current

SCU20

Racetrack shape to reduce multipoles

New winding scheme: from one groove to the next changing winding direction. Staggering removed to avoid possible unwanted increase of field integrals and a reduction of on axis B quality

Superconducting switch

Aim:

use only one power supply instead of several for the different circuits, reducing the thermal input to the device

Applications: period length switch (i.e., SCUW) active shimming

Minimum power dissipation of 200 mW per heater, demonstrated in an ad hoc conduction cooling setup in CASPER I

T. Holubek et al., IEEE Trans. on Appl. Supercond. 3800104 Vol. 23-3 (2013)

Bundesministerium für Bildung und Forschung

Minimum power dissipation can be further reduced: Ongoing additional tests in CASPERII

ANK

Application of other materials: NbTi wire with artificial pinning centers

30

ANKA collaboration with ITeP (Th. Schneider and M. Kläser, KIT) and SupraMagnetics, Inc., USA

