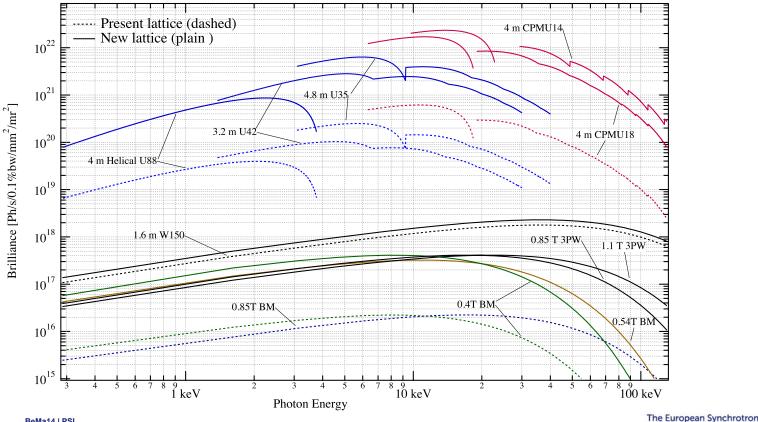
MAGNETS AND INSERTION DEVICES FOR THE ESRF II

OUTLINE

- Magnetic design
- R&D and Magnetic measurements
- IDs & BM sources
- Summary
- J. Chavanne
- G. Lebec
- C. Benabderrahmane
- C.Penel


On behalf the accelerator upgrade project team

ESRF UPGRADE: SMALLER HORIZONTAL EMITTANCE

4 nm (present) →150 pm in 2019/2020

- Increased brilliance of X-ray sources : factor ~ 25 for undulators
- Increased coherent fraction in undulator beams



ESRF

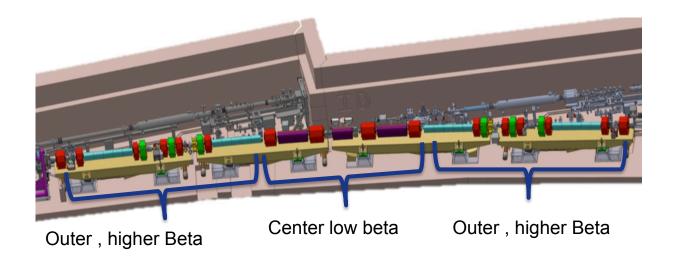
PRELIMINARY REMARKS

Specificity of ESRF accelerator upgrade

2BA-> 7BA with same circumference (844m) Same source position at ID straight sections

- 1096 magnets to build
- Longitudinal compactness: limited space between magnets (~ few centimeters)
- Common denominator for upgraded facilities

PRELIMINARY REMARKS (CONT.)


Magnet apertures [mm]

type	Existing	new	
Dipole	50	25	
Quadrupoles	72	25 - 32	
Sextupoles	72	38	

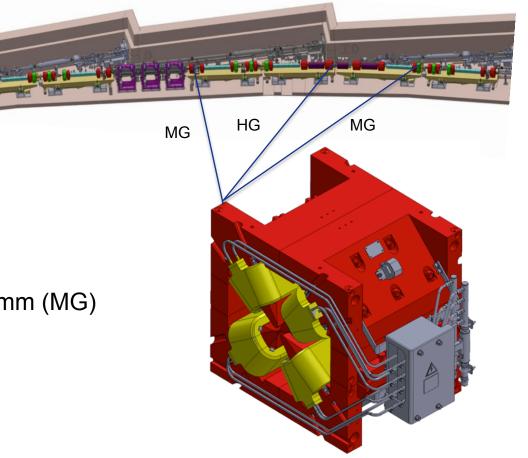
- Apertures reduced by a factor ~ 2
- Constraints on vacuum chamber design

GOOD FIELD REGIONS (GFR)

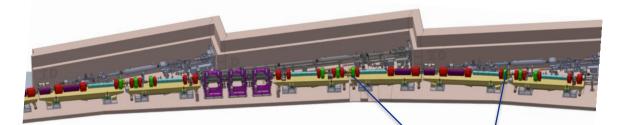
Two (elliptical) GFRs defined:

	Outer HxV [mm ²]	Center HxV [mm ²]
GRF radius (HxV)	13x9	7x5

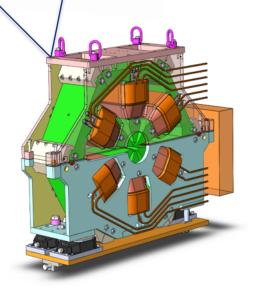
Mostly dictated by (off axis) injection requirements


Magnet type	GFR radius [mm]	Field quality (systematic)	Tuning range [%]
DL	13	D <i>B/B</i> < 10⁻³	0
DQ	7	D <i>G</i> / <i>G</i> < 10 ⁻²	Gradient: +/- 2
Q – 50 T/m	13	D <i>B</i> /B < 5 10 ⁻³	55 – 110
Q – 85 T/m	7	D <i>B</i> /B < 5 10 ⁻⁴	95 – 105
S	13	D <i>H</i> /H < 0.1	20 – 130
0	13		0 – 145

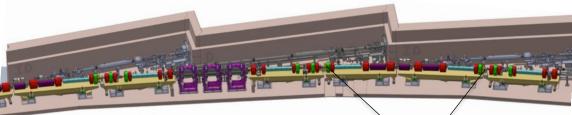
QUADRUPOLES


Parameters

- Moderate gradient: 51 T/m
 - length 0.16...0.29 m
 - 12 units/cell
- High gradient: 85 T/m,
 - length 0.39...0.48 m
 - 4 units/cell
- Bore radius: 12.8 mm (HG) / 15.9 mm (MG)
- min. Vertical gap: 11 mm
- Power consumption: 1...1.6 kW
- Solid / laminated iron yoke
- HG prototype under construction

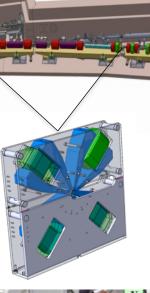


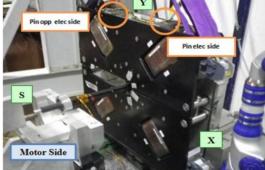
SEXTUPOLES


Parameters

- 900...1600 T/m² nominal strength (1/2B")
- ~ 2200 T/m² @ max current
- Iron length 204 mm & ~ 160 mm
- bore radius 19 mm
- Laminated magnet
- 6 units/cell
- 1st Engineering design completed
- 2nd simplified version under completion

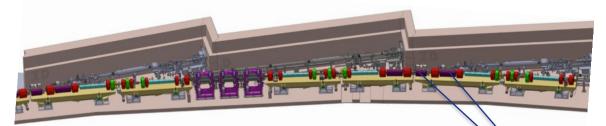
OCTUPOLES



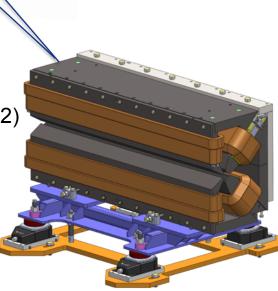

parameters

- Strength: up to 65 10³ T/m³
- Solid iron poles
- •2 units/cell

Prototype


- First prototype built (Sigmaphi) and measured
- Measured int. strength: 4504 T/m² @ 6.2A
- air-cooled coils

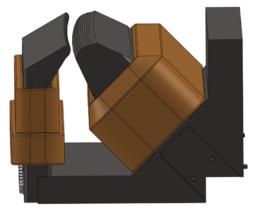
COMBINED DIPOLE-QUADRUPOLES

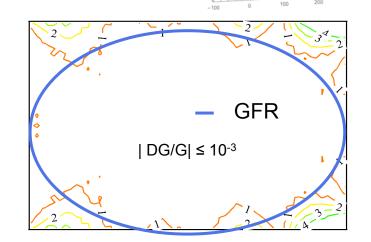


DQ2

DQ1

Parameters


- " Half quadrupole" concept
- "Single-sided" magnet: easy access on one side
- 0.54 T, 33.9 T/m, 1.08 m (DQ1), and 0.43 T, 33.7 T/m, 0.72 m (DQ2)
- Same pole shape and magnet curvature for DQ1 and DQ2
- •Trimming coils: +/-2 % gradient at fixed field
- Solid iron magnet
- •3 units/cell



Magnetic design

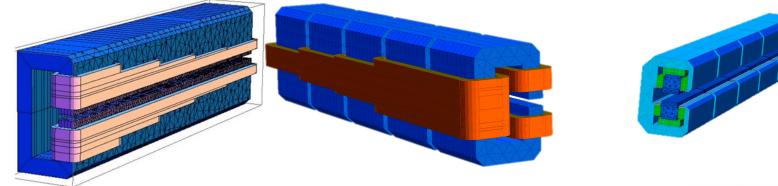
- Field integrated along a curved path
- Field integrals on the boundary of an elliptic Good Field Region (GFR)

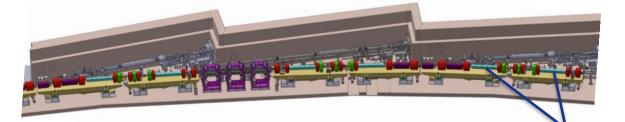
DG/G expressed in 10⁻³. Specification: DG/G < 10^{-2} . GFR: 7x5 mm. Integration on an arc.

The European Synchrotron

200

DL MAGNETIC DESIGN


Different magnetic designs visited @ ESRF

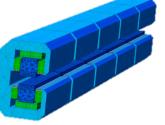

Resistive DLs

Permanent Magnet DLS

2.0

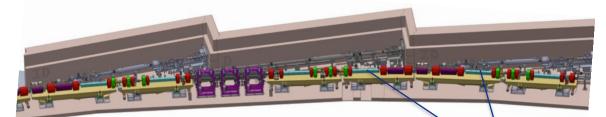
2.5m

0.6 -0.5

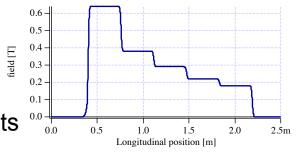

0.5

1.0

Longitudinal position [m]


1.5

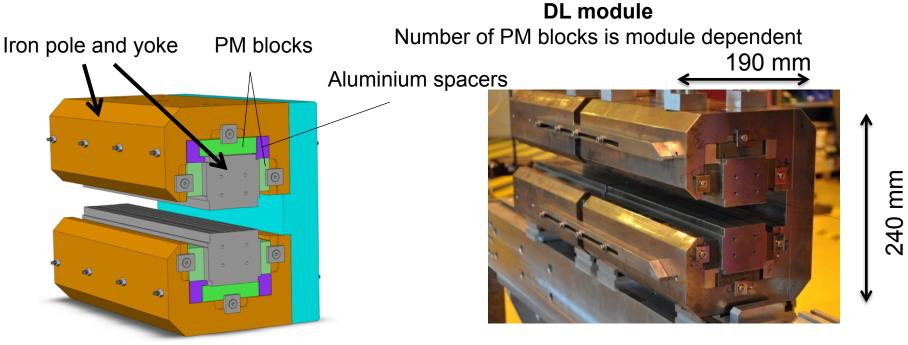
field [T] 0.4 0.3 -0.2 -0.1 -0.0 -0.0



DLS- DIPOLES WITH LONGITUDINAL FIELD GRADIENT

Parameters

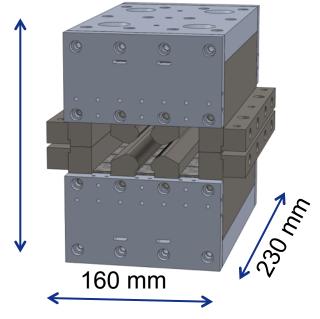
- Iron dominated permanent magnet structure
- High coercivity Sm₂Co₁₇ PM material
 - High stability against radiation induced demagnetization
- 5 modules with different field /dipole
- Total length 1788 mm
- magnetic gap 25 mm
- solid iron magnet
- prototypes under measurements
- 4 units/cell



DL field profile

128 units needed

PM DIPOLE MODULES


to real structure (2 modules)

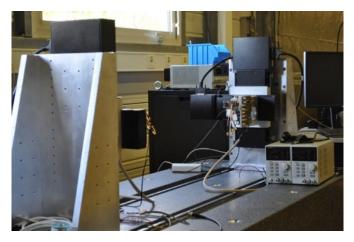
From concept Weight ~ 83 kg/module

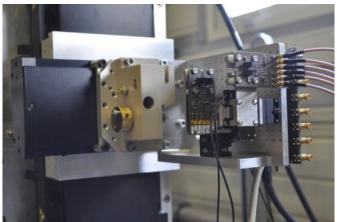
Target: setup a low cost simple design

R&D topic, not committed for the ongoing upgrade

Parameters

- •82 T/m gradient
- •Simple PM rectangular shape
- |DG/G| < 10⁻³ @ 7mm horizontal (measured)
- Easy correction (shimming)
- vertical pole gap: 10.2 mm
- •Length 230 mm
- 40 kg

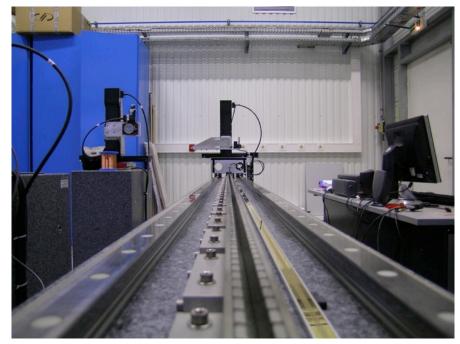

MEASUREMENT BENCHES


Stretched wire bench

- New measurement methods
- •New calibration procedures
- •Simplification of the control software

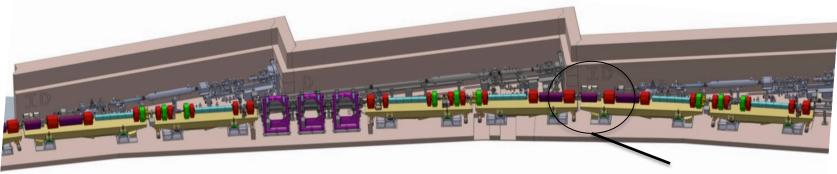
Vibrating wire bench

- Development of the wire position monitors
- Generator for wire excitation
- Vibrating wire analysis R&D
- = Same bench as stretched + vibrating wire layer



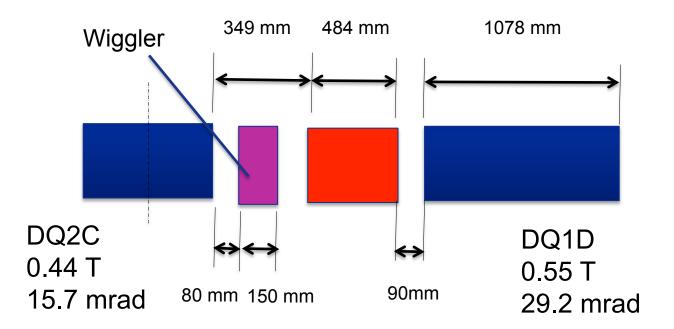
MEASURING BENCHES : LOCAL FIELD MAPPING

Hall probe benches as used for IDs


- Developed at ESRF
- Several units in use
- Linear motors
- 3D hall sensors
- On the fly measurements
- Well performing hall data processing

- New implementation
- Accurate 3D trajectory of hall probe
 - NEWPORT XPS controllers (already existing)
 - To be used for curved prototypes/pre-series magnets (DQs, DLs)

PHOTON SOURCES: BM TYPE RADIATION



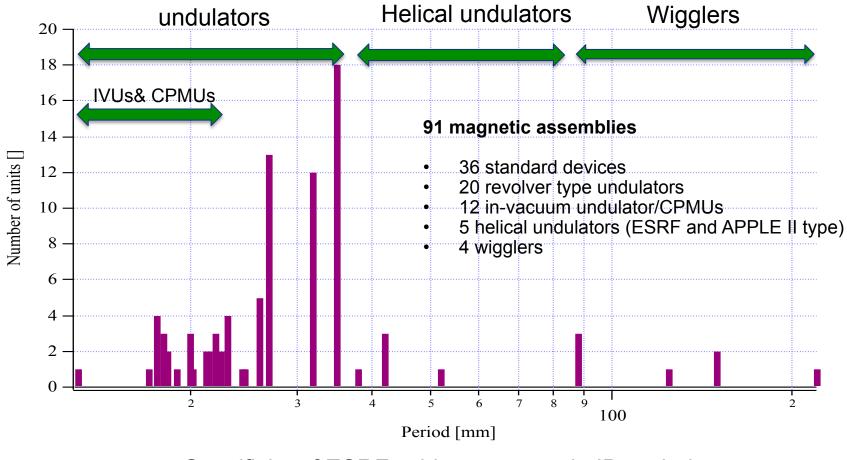
- Implementation of short Wigglers
 - Compensates lower field BM source
 - Restore hard X-ray capacity for BLs
 - Short devices ~ 150 mm size
 - Mini Insertion Device

BM sources Combined dipole quadrupole (DQ) Short wiggler

installed downstream of first dipole

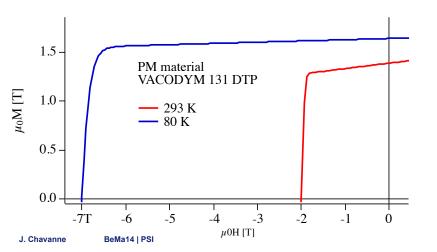
features

- fixed gap simple device devices (~ portable device)
- Field adaptable to beamline needs


Most of existing devices will be used in the upgraded storage ring

- 6 GeV \rightarrow 6 GeV
- Achieved field quality compatible with new emittance (~ 90 % of devices)
- reverse engineering needed in a few straight sections ($6 \text{ m} \rightarrow 5 \text{ m}$)

ID IN OPERATION @ ESRF


Specificity of ESRF: wide spectrum in ID period

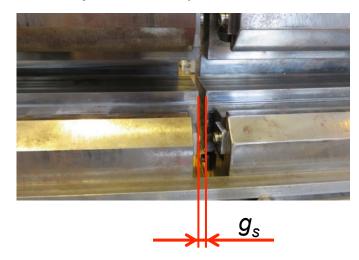
PHOTON SOURCES: SMALL GAP DEVICES

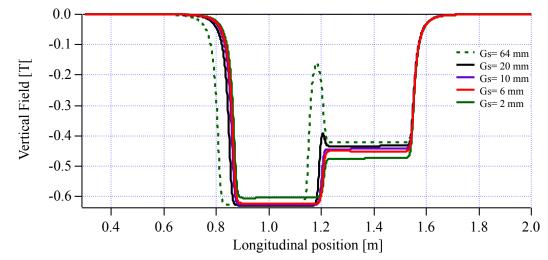
R&D pursued on CPMUs 3rd device under construction

- New PM material developed by Vacuumschmelze
- PrFeB, Br =1.62 T, $|\mu_0Hc_J| > 7 T @ 80 K$
- includes Grain boundary Diffusion
- New magnetic measurement system
- Installation mid-2015
- Period 14.5 mm, L=2 m, Min. gap 4.3 mm,
- Peak field: 1.23 T ,K=1.67 @ min. gapq

SUMMARY

- ESRF II lattice requires enquires several new types of magnets
- Magnet design mostly completed
 - Innovative concepts (PM DLs, DQs)
 - Still a lot to do
- Ongoing measurements of prototypes provide useful feedback
- Engineering design at suitable stage for tendering processes
 - Technical specs starting
 - calls for tenders mid 2015/2016
- Development of magnetic measurement tools
- New BM type sources (mini wigglers)
- Existing IDs used in the upgraded storage ring
- Smaller gap/shorter periods CPMUs

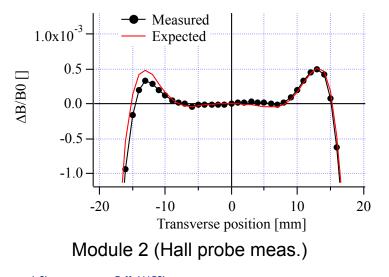


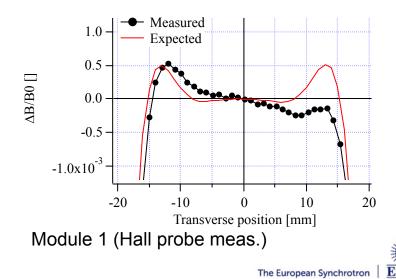

Thank you

DL – LONGITUDINAL GRADIENT DIPOLES

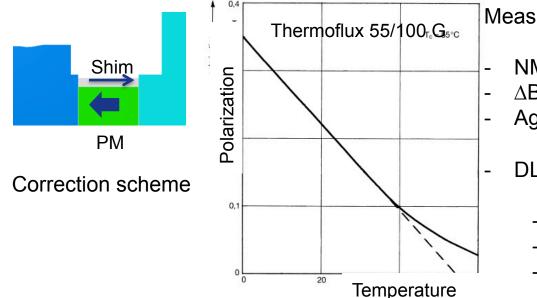
Longitudinal field profile

- field sharing controlled with longitudinal gap ($g_s = 3 \sim 6$ mm)
- very moderate longitudinal force (even cancelled in some cases)
- •The "optimum" g_s changes between the modules of the full magnet (field step dependence)


DL – LONGITUDINAL GRADIENT DIPOLES


Homogeneity of central field

- · Quality dominated by pole faces parallelism
- May need refinement of mechanical tolerances
- Easy and fast mechanical correction (shimming)
- Tolerance: D*B*/*B* < 10⁻³ @13 mm


Optimized pole shape

Temperature compensation

- Fe-Ni material (Thermoflux 55/100 G) used for passive compensation
- Tested with NdFeB magnets (thermal coefficient 3 times larger than for Sm_2Co_{17} magnets)

Measured performance on prototype:

- NMR probe measurements
- $\Delta B/B/dT = 10^{-4}/C / mm \text{ of shim } @ 0.64 T$
- Agree well with simulation
- DL field can be easily stabilized (Sm_2Co_{17})
 - stability < 5 10⁻⁵/C
 - 290 kg Fe-Ni needed for all 128 DLs
 - DL field reduced by ~ 1.2 %

