FRINGE FIELD MODELING FOR LARGE APERTURE QUADRUPOLES

BARBARA DALENA

IN COLLABORATION WITH:
O. GABOUEV, J. PAYET , A. CHANCÉ, CEA
R. DE MARIA, M. GIOVANNOZZI, CERN
D.R. BRETT, R. B. APPLEBY, MANCHESTER UNIV AND COCKCROFT INSTITUTE

- Motivation
- Computation of realistic symplectic transfer maps of charged particles
- Non linear fringe field transfer maps
- Conclusion \& Outlook

MOTIVATION

The HL-LHC project relies on large aperture magnets (due to increased beam sizes before the IP)
\Rightarrow The beam is much more sensitive to non-linear perturbations in this region.

- the effect has been quantified by direct analytical estimates of detuning with amplitude and chromatic effects

(A. V. Bogomyagkov et al. WEPEA049 @ IPAC'13).

The effect of the fringe fields is small, nevertheless it cannot be completely neglected.
\Rightarrow Quantify long term beam dynamics effects

Ultimate Goals

- Definition of field quality and corrections
- Provide feedback to the designers of magnets

Impact of "IT_errortable_v66_4" at collision compared to impact of the other IR magnets

INTEGRATED FIELD HARMONICS

By S. Izquierdo Bermudez

COMPUTATION OF REALISTIC TRANSFER MAPS OF CHARGED PARTICLES

REALISTIC TRANSFER MAP COMPUTATION: SCHEME OF THE METHOD

- Hermite Spline Interpolator (HSI) better precision for low harmonics than QWI (Quadratic Weight Interpolator)
- map step of 3 mm for high slope and for low field regions

Inner triplet prototype magnet for HL-LHC

Courtesy of CERN magnet group

Gradient $140 \mathrm{~T} / \mathrm{m}, \square=150 \mathrm{~mm}$
QXF: Symmetric Return end
$\mathrm{z}=[0,487.5] \mathrm{mm}$: Magnetic yoke and pad
z=[487.5,7125] mm: Magnetic yoke, non-magnetic pad
Data
$B x, B y, B z$ in a Cartesian grid:

- $x=0: 75: 3 \mathrm{~mm}$
- $y=0: 75: 3 \mathrm{~mm}$
- $\quad z=100: 1300: 3 \mathrm{~mm}$

VECTOR POTENTIAL IN CARTESIAN COORDINATES

- The three components of the quadrupole vector potential can be written as expansions of normal (s) and skew (c) multipoles
- Each of the multipole can be expanded in terms of homogenous polynomials in $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z}-dependent coefficients $C_{m, \alpha}{ }^{[n]}(z)$ (called generalized gradients)

$$
\rightarrow\left\{\begin{array}{l}
A_{x}=\sum_{m=1}^{\infty} A_{x}^{m, s}-A_{x}^{m, c} \\
A_{y}=\sum_{m=1}^{\infty} A_{y}^{m, s}-A_{y}^{m, c} \\
A_{z}=\sum_{m=1}^{\infty} A_{z}^{m, s}-A_{z}^{m, c}
\end{array}\right.
$$

normal multipole

$$
\alpha=s \Rightarrow \mathrm{C}=\mathfrak{R}
$$

$$
A_{x}^{m, \alpha}=-\frac{1}{m} x \mathbb{C}\left[(x+i y)^{m}\right] \sum_{l=0}^{\infty} \frac{(-1)^{l} m!}{2^{2 l} l!(l+m)!} C_{m, \alpha}^{[2 l+1]}(z)\left(x^{2}+y^{2}\right)^{l}
$$

$$
\alpha=c \Rightarrow \mathrm{C}=\mathfrak{J}
$$

$$
\begin{aligned}
& \vec{B}=\nabla \psi \\
& \nabla^{2} \psi=0 \\
& \nabla \times \vec{A}=\nabla \psi
\end{aligned}
$$

$$
\begin{aligned}
& A_{y}^{m, \alpha}=-\frac{1}{m} y \mathbb{C}\left[(x+i y)^{m}\right] \sum_{l=0}^{\infty} \frac{(-1)^{l} m!}{2^{2 l} l!(l+m)!} \underline{C_{m, \alpha}^{[2 l+1]}(z)}\left(x^{2}+y^{2}\right)^{l} \\
& A_{z}^{m, \alpha}=\frac{1}{m} \mathbb{C}\left[(x+i y)^{m}\right] \sum_{l=0}^{\infty} \frac{(-1)^{l} m!(2 l+m)}{2^{2 l} l!(l+m)!} \underline{C_{m, \alpha}^{[2 l]}(z)}\left(x^{2}+y^{2}\right)^{l}
\end{aligned}
$$

Cea GENERALIZED GRADIENTS

For normal multipoles

$$
\begin{array}{rc}
C_{m}^{[l]}(z)=\frac{i^{l}}{2^{m} m!\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{e^{i k z} k^{m+l-1}}{I_{m}^{\prime}(k R)} \widetilde{B}_{m}(R, k) d k & \\
& \nabla \times \vec{A}=\vec{B} \\
& \mathcal{F}\left(f^{(n)}\right)(k)=(i k)^{n} \mathcal{F}(f)(k)
\end{array}
$$

where: $\quad I_{m}^{\prime}(k R)$ is the derivative of the modified Bessel function

$$
\begin{gathered}
\tilde{B}_{m}(R, k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\mathrm{ikz}} B_{m}(R, z) d z \\
B_{r}(R, \phi, z)=\sum_{m=1}^{\infty} B_{m}(R, z) \sin (m \phi)+A_{m}(R, z) \cos (m \phi) \\
\downarrow
\end{gathered}
$$

Fields Harmonics

- Numerical computation of Fourier integrals using Filonspline formula*: spline interpolation of data

$$
C_{m}^{[l]}(z)=\frac{i^{l}}{2^{m} m!\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{e^{i k z} k^{m+l-1}}{I_{m}^{\prime}(k R)} \widetilde{B}_{m}(R, k) d k
$$

- Comparison between harmonics from harmonic analysis and harmonics reconstructed from the gradient sum

$$
B_{m}(R, z)=\sum_{n=0}^{\infty}(m+2 l) \frac{(-1)^{l} m!}{4^{l} l!(m+l)!} R^{m+2 l-1} C_{m}^{[2 l]}(z)
$$

- Parameters
- Longitudinal step
- Map length
- Frequency step

Fringe field slope

 reconstitutionGibbs oscillations (at boundaries)

- Number of gradient derivatives

*E., Catmull, and R., Rom "A class of local interpolating splines", Computer Aided Geometric Design, R. E. Barnhill and R. F. Reisenfeld, Eds. Academic Press, New York, 1974, pp. 317-326.
B. Einarsson, "Numerical computation of Fourier integrals with cubic splines", 1968.

Outside the radius of the Harmonic Analysis the quality of field reconstruction is not good.

Need to:

- use a radius as larger as possible, without loosing homogeneity of the field
- study alternative field fitting procedures

Equivalent paraxial Hamiltonian in the extended phase space:

$$
K\left(x, p_{x}, y, p_{y}, \delta, l, z, p_{z} ; \sigma\right) \approx-\delta+\frac{\left(p_{x}-a_{x}\right)^{2}}{2(1+\delta)}+\frac{\left(p_{y}-a_{y}\right)^{2}}{2(1+\delta)}-a_{z}+p_{z}
$$

$a_{x, y, z} \equiv a_{x, y, z}(x, y, z)=\frac{q A_{x, y, z}(x, y, z)}{P_{0} c}$ scaled vector potential
$\left(z, p_{z}\right) 4^{\text {th }}$ canonical pairs
$d \sigma=d z \quad$ independent variable

The solution of the equation of motion for this Hamiltonian using Lie algebra formalism is (Transfer Map or Lie Map):

$$
M(\sigma)=\exp (-\sigma: K:)
$$

The transfer map $\boldsymbol{M}(\boldsymbol{\sigma})$ can be replaced by a product of symplectic maps which approximates it (symplectic integrator).

cea

K split as:

- $K_{1}=p_{z}-\delta$
- $K_{2}=-a_{z}$
- $K_{3}=\left(\frac{\left(p_{x}-a_{x}\right)^{2}}{2(1+\delta)}\right)$
- $K_{4}=\left(\frac{\left(p_{y}-a_{y}\right)^{2}}{2(1+\delta)}\right)$

The second order approximation of the Lie Map is:
$\mathcal{M}_{2}(\Delta \sigma)=\exp \left(:-\frac{\Delta \sigma}{2}\left(p_{z}-\delta\right): \exp \left(: \frac{\Delta \sigma}{2} a_{z}: \operatorname{xp}\left(:-\int a_{x} d x: \exp \left(:-\frac{\Delta \sigma}{2} \frac{\left(p_{x}\right)^{2}}{2(1+\delta)}:\right)\right.\right.\right.$ $\exp \left(: \int a_{x} d x: \operatorname{xp}\left(:-\int a_{y} d y: \exp \left(:-\Delta \sigma \frac{\left(p_{y}\right)^{2}}{2(1+\delta)}: \exp \left(: \int a_{y} d y: \operatorname{cxp}\left(:-\int a_{x} d x:\right.\right.\right.\right.\right.$
$\exp \left(:-\frac{\Delta \sigma}{2}\left(\frac{\left(p_{x}\right)^{2}}{2(1+\delta)}\right): \operatorname{lexp}\left(: \int a_{x} d x: \cdot \exp \left(: \frac{\Delta \sigma}{2} a_{z}: \exp \left(:-\frac{\Delta \sigma}{2}\left(p_{z}-\delta\right):\right)\right.\right.\right.$
Explicit dependence on z
using

$$
\begin{aligned}
& \exp \left(:-\Delta \sigma K_{4}:\right)=\exp \left(:-\Delta \sigma\left(\frac{\left(p_{y}-a_{y}\right)^{2}}{2(1+\delta)}\right):\right) \\
& =\exp \left(:-\int a_{y} d y:\right) \exp \left(:-\Delta \sigma \frac{\left(p_{y}\right)^{2}}{2(1+\delta)}:\right) \exp \left(: \int a_{y} d y:\right)
\end{aligned}
$$

Y. Wu, E. Forest and D. S. Robin, Phys. Rev. E 68, 046502, 2003

	K_{1}	K_{2}	K_{3}			K_{4}		
	$-\frac{\Delta \sigma}{2}\left(p_{z}-\delta\right)$	$\frac{\Delta \sigma}{2} a_{z}$	$-\int a_{x} d x$	$-\frac{\Delta \sigma}{2} \frac{\left(\boldsymbol{p}_{\chi}\right)^{2}}{2(1+\delta)}$	$\int a_{x} d x$	$-\int a_{y} d y$	$-\Delta \sigma \frac{\left(\boldsymbol{p}_{\boldsymbol{y}}\right)^{2}}{2(1+\delta)}$	$\int a_{y} d y$
x				$+\frac{p_{x} \Delta \sigma}{2(1+\delta)}$				
p_{x}		$+\frac{\partial a_{z}}{\partial x} \frac{\Delta \sigma}{2}$	$-a_{x}$		$+a_{x}$	$-\int \frac{\partial a_{y}}{\partial x} d y$		$+\int \frac{\partial a_{y}}{\partial x} d y$
y							$+\frac{p_{y} \Delta \sigma}{(1+\delta)}$	
p_{y}		$+\frac{\partial a_{z}}{\partial y} \frac{\Delta \sigma}{2}$	$-\int \frac{\partial a_{x}}{\partial y} d x$		$+\int \frac{\partial a_{x}}{\partial y} d x$	$-a_{y}$		$+a_{y}$
1	$-\frac{\Delta \sigma}{2}$			$-\frac{\left(p_{x}\right)^{2} \Delta \sigma}{4(1+\delta)^{2}}$			$-\frac{\left(p_{y}\right)^{2} \Delta \sigma}{2(1+\delta)^{2}}$	
δ								
z	$+\frac{\Delta \sigma}{2}$							
p_{z}		$+\frac{\partial a_{z}}{\partial z} \frac{\Delta \sigma}{2}$	$-\int \frac{\partial a_{x}}{\partial z} d x$		$+\int \frac{\partial a_{x}}{\partial z} d x$	$-\int \frac{\partial a_{y}}{\partial z} d y$		$+\int \frac{\partial a_{y}}{\partial z} d y$

The second half of iterations for $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} are not reported in the table.

NON LINEAR FRINGE FIELD EFFECT

Tracking procedure:

Forest Hard Edge model*

Rotation of -45°
Skew Hard edge kicks:
$\Delta x=\frac{-k_{0}}{6} \frac{y^{3}}{1+\delta}$
$\Delta p_{x}=\frac{k_{0}}{6}\left[\frac{3 p_{y} x^{2}}{1+\delta}\right]$
Rotation of 45°

$\left(x_{i n} p x_{i n} y_{i n} p y_{i n}\right)$

(0 , valpx, val , 0)

First order derivative of the generalized gradient is not enough to describe the fringe field of this quadrupole

BeMa | December 2014 | PAGE 19
*É. Forest and J. Milutinovic, Nuclear Instruments and Methods in Physics Research A269 (1988) 474-482

MODEL COMPARISON (2/2)

Tracking procedure:

4th order integrator

integration step

Figure 7.3: Seven steps in the 4-th order symplectic integration. A. Chao Lectures

($\left.x_{i n}, p x_{i n}, y_{i n} p y_{i n}\right)$

(0 , valpx, val , 0)

$\left(x_{\text {out }}, p x_{\text {out }}, y_{\text {out }}, p y_{\text {out }}\right)$ (valx , valpx1, val1, val2)

Pros:
I. Possibilities to control the field harmonics used in the simulations. Each field component can be switched on and off easily in the calculation of the generalized gradients.
II. Lie Tracking $\left(I\left(L_{f f}\right)\right)$ of fringe field region only

$$
D\left(-L_{d}\right) I\left(L_{f f}\right) Q^{-1}\left(L_{q}\right) Q\left(L_{0}\right) Q^{-1}\left(L_{q}\right) I\left(L_{f f}\right) D\left(-L_{d}\right)^{*}
$$

slow with respect to multipole kicks
(need 100-200 steps for each fringe field)

CONCLUSION

Luminosity

27
$>\quad$ The method to compute a transfer map of a z-dependent Hamiltonian using 3D magnetic field data has been implemented
$>\quad$ It has been validated with a $4^{\text {th }}$ order symplectic integrator using directly the 3D magnetic field data in a single quadrupole
$>\quad$ The comparison with analytical leading order fringe field model by ForestMilutinovic shows a discrepancy at large particle amplitudes due to the higher order derivatives needed to describe the fringe field shape

OUTLOOK

$>\quad$ Study the impact of realistic fringe field on the long term beam dynamics \Rightarrow integration of the method in Sixtrack
frequency map analysis (A. Wolski)
improve the fitting of the 3D magnetic field map
Y. Wu, E. Forest and D. S. Robin, Phys. Rev. E 68, 046502 (2003)
A. J. Dragt, www.physics.umd.edu/dsat
M. Venturini, A.J. Dragt, NIM A 427, 387 (1999)
C.E. Mitchell and A. J. Dragt, Phys. Rev. ST AB 13, 064001 (2010)

É. Forest and J. Milutinovic, Nucl. Instr. and Meth. A 269, 474 (1988)
E. Forest and R. D. Ruth, Physica D 43, 105 (1990)
E. Forest, "Beam Dynamics A New Attitude and Framework", Harwood publisher
B. Dalena et al. TUPRO002, IPAC'14

SPARES

$$
\begin{aligned}
& A_{x}=\sum_{m} \sum_{l} \sum_{p=0: 2: m} \sum_{q=0}^{l}-\frac{1}{m} \frac{(-1)^{l} m!}{2^{2 l} l!(l+m)!}\binom{m}{p}\binom{l}{q} \underline{C_{m, \alpha}^{[2 l+1]}(z)} i^{p} x^{m-p+2 l-2 q+1} y^{p+2 q} \\
& A_{y}=\sum_{m} \sum_{l} \sum_{p=0: 2: m} \sum_{q=0}^{l}-\frac{1}{m} \frac{(-1)^{l} m!}{2^{2 l} l!(l+m)!}\binom{m}{p}\binom{l}{q} \underline{C_{m, \alpha}^{[2 l+1]}(z) i^{p} x^{m-p+2 l-2 q} y^{p+2 q+1}} \\
& A_{z}=\sum_{m} \sum_{l} \sum_{p=0: 2: m} \sum_{q=0}^{l} \frac{1}{m} \frac{(-1)^{l} m!(2 l+m)}{2^{2 l l!(l+m)!}}\binom{m}{p}\binom{l}{q} \underline{C_{m, \alpha}^{[2 l]}(z) i^{p} x^{m-p+2 l-2 q} y^{p+2 q}}
\end{aligned}
$$

generalized gradients
with $\left[(x+i y)^{m}\right]=\sum_{p=0}^{m}\binom{m}{p} x^{m-p}(i y)^{p}=\sum_{p=0: 2: m}\binom{m}{p} x^{m-p}(i y)^{p}+\sum_{p=1: 2: m}\binom{m}{p} x^{m-p}(i y)^{p}$

References:

$$
\left(x^{2}+y^{2}\right)^{l}=\sum_{q=0}^{l}\binom{l}{q} x^{2 l-2 q} y^{2 q}
$$

