$$
T _R _A _C _K:
$$
 an accurate ray-tracing tool for magnet development at PSI

Vjeran Vranković, PSI

Beam Dynamics meets Magnets - II
December 2014, PSI, Bad Zurzach, Switzerland

The ultimate magnet quality inspection tool is a particle beam.

Motivation II

- particle ray-tracing is integral part of magnet design and magnetic measurements analysis
- true particle ray-tracing (integration in space with the real non-parametrised fields)
- available option (VF Opera-3d) was restricted, inflexible and slow for ray-tracing
- own code allowing for future modifications and extensions at will and at no extra costs
- predecessor was a 2D programme ("gokart")
- development started in 1987
- written in FORTRAN 77
- graphics are X11 based (PSI-GRAPHX package)
- original platform DEC VAX / VMS
- ported to Tru64 UNIX, Mac OS X and Linux
- based on the analytical solution of the EOM, not implementation of Runge-Kutta or any other numerical method
- integration accuracy depends only on the field accuracy
- originally designed for analysis of beam line magnets and parts of beam lines (Cartesian coordinate system)
- fully 3D, horizontal as well as vertical beam bending planes
- tracks single particles and full phase-space beam with outputs at any point along the beam

General description II

- magnetic fields are input - either calculated or measured fields on grid points
- electric fields added, allowing for analysis of magnetic separators or particle spin rotators
- implemented relativistic effect on particle mass
- time-harmonic varying field option added for analysis of cyclotrons
- built-in scripting language
equation of motion
assumption:
the particle mass does not change
set of partial differential equations
assuming that the fields are constant this can be solved analytically
position in space is then exact

Methodology II

assumptions:
constant field over the entire integration step no particle mass change

within analytical solution of equation of motion

Interface to TRANSPORT

- input/output file format for set of particles (with full beam phase-space)
- transfer matrix, 1st and 2nd order
- K1 fringe field parameter
- beam envelope calculation
paul scherrer institut

Examples:
single dipole magnet (HIPA, PSI) I
sector magnet
gap $=100 \mathrm{~mm}$
$\mathrm{B}_{0}=1.64 \mathrm{~T}$
bending angle $=37.4^{\circ}$
bending radius $=2.5 \mathrm{~m}$
$p^{+} 590 \mathrm{MeV}$

paul scherrer institut

Examples:
single dipole magnet (HIPA, PSI) II

paul scherrer institut
"
Examples:
single dipole magnet (SLS, PSI)

BX: H-magnet
$\mathrm{B}_{0}=1.4 \mathrm{~T}$
SBX : H-magnet with 3 poles
$B_{0}=3 T$
gap $=42$ mm
bending angle $=14^{\circ}$

paul scherrer institut

Examples:

part of a beam line ($\pi E 1$, PSI)

beam line:
4 quads (1 field map)
90° bending magnet

Examples:

ExB device (μ SR, PSI)

TOSCA calculations with $T _R _A _C _K$ optimisation for the device geometry
$\mathrm{V}= \pm 175 \mathrm{kV}$ gap $=120 \mathrm{~mm}$
$\mathrm{L}=1.8 \mathrm{~m}$
$B=380$ Gauss
gap $=610 \mathrm{~mm}$
$\mathrm{L}=2.6 \mathrm{~m}$

V. Vrankovic et al., "Design of a Magnet for the Spin-Rotator Device for the High Magnetic Field μ SR Instrument at Paul Scherrer Institute", IEEE Transactions on Applied Superconductivity, $22(3), 2012$
paul scherrer institut

ExB device ($\mu \mathrm{SR}, \mathrm{PSI}$) II

paul scherrer institut

Examples:

cyclotron (PROSCAN, PSI)

various effects investigated:

- effect of coil geometry errors (tilt, shift, asymmetry)
- magnetic field random errors
- dee voltage asymmetry

Summary

- true ray-tracing with analytical solution of EOM
- without any approximation or parametrisation of fields
- from 1987 till now and still going strong
- usage outside the Magnet Section but also outside of PSI available at http://magnet.web.psi.ch/Analysis/track.html
- VMS UNIX Linux migrations
- improvement? yes - GUI
- enhancement? maybe and reluctantly - scattering

Contributors

- David George - co-author
- John Crawford - 1st "step" donator
- Stefan Adam - file formats' adviser
- Phil Mees - vms qo events
- Urs Rohrer - TRANSPORT interface tips
- David Taqqu - particle damping
- Marco Schippers - cyclotron parameters
- Christina Wouters - useful user guide

