

Beam dynamics and magnet design challenges for 4th-generation storage ring light sources

Michael Borland

December 1, 2014

Accelerator Systems Division

Outline

- What do storage ring light source users want?
- Multi-bend achromat lattices
- Scaling of lattice and magnet properties
- Beam dynamics issues for low-emittance rings
- Example: Advanced Photon Source (APS) upgrade
- Summary of magnet requirements

What Do SR Users Want?

- No universal agreement!
- Common desire: emittance so small that it might as well be zero
 - Brightness is as high as possible for a given beam current

$$B \propto \frac{N_{\gamma}}{(\Delta \lambda / \lambda) \Delta t \Sigma_x \Sigma_{x'} \Sigma_y \Sigma_{y'}} \rightarrow \frac{4\pi^2 N_{\gamma}}{(\Delta \lambda / \lambda) \Delta t \lambda^2}$$

- Beams are transversely coherent and can be focused tightly
- While not every experiment benefits from brightness
 - It's traditionally the most-emphasized quantity
 - Emittance is well understood and gives a simple goal

How Close are We to Ultimate Performance?

Within factors of ~2, we'd like

$$\epsilon_{x,y} \leq \frac{1}{2}\epsilon_r \approx \frac{\lambda}{4\pi}$$

In more practical terms

$$\begin{array}{lll} \epsilon_q[pm] & \lesssim & \frac{100}{E_p[keV]} \\ \epsilon_q[pm] & \lesssim & 8\lambda[\mathring{A}] \end{array} & \Rightarrow & 1 \text{ keV} & \to & \epsilon_q \lesssim 100 \text{ pm} \end{array}$$

For typical 3rd-generation rings

$$\epsilon_x : [1, 5]$$
nm $\epsilon_y : [1, 40]$ pm

so we are several orders of magnitude away from DL performance

Emittance Scaling

Emittance is governed by¹

$$\epsilon_0 = F(\nu, \text{type}) \frac{E^2}{N_d^3} \qquad \propto \frac{E^2}{\frac{C^3}{C^3}}$$

Fixed cell type

where N_{d} is the number of dipoles in the ring

- Simple explanation
 - Emittance is driven by randomness of photon emission in presence of dispersive (energy-dependent) orbits
 - Breaking up dipoles and putting focusing (quadrupoles) between the parts allows tightly controlling the magnitude of dispersive orbits

1: J. Murphy, NSLS Light Source Data Booklet

From Double to Multi-Bend Achromats

- Rings today have N_d=2N_s or (more rarely) 3N_s
- Several groups proposed N_d/N_s>3 lattices in 1990s¹
- 7BA should have ~40x lower emittance than 2B(A)

1: Einfeld et al., NIM A 335, 1993; Joho et al., EPAC 94;: Einfeld et al., PAC95; Kaltchev et al., PAC95.

Figures courtesy C. Steier, LBNL.

M. Borland, 4th generation storage ring light sources, BeMa2014

MAX-IV¹ vs ESRF² Style 7BA Lattices

- "Typical" MAX-IV style lattice
- Small dispersion throughout relatively uniform arcs
- Sextupoles distributed through arcs
- Geometric sextupoles or octupoles outside arcs
- "Typical" ESRF-style lattice
- Dispersion bump between longitudinal gradient dipoles
- Sextupoles only in dispersion bump
 - Factor of 2 to 4 weaker than in MAX-IV style lattice
- Octupoles possible in dispersion bump

2: L. Farvacque et al., IPAC13, 79.

^{1:} S. Leemann et al. PRSTAB 12:120701, 2009

Model Storage Ring for Understanding Scaling

- We looked at a model storage ring consisting of series of identical cells¹
 - 600-m circumference, 4.5 GeV
- For fixed circumference, varied number of cells, looked at implications
 - Magnet strength, bore
 - Tolerances
 - Nonlinear dynamics

In-construction and next-generation rings and concepts

1: M. Borland et al., J. Synch. Rad., 21, 912-936 (2014).

Scaling of Gradients

- Explanation:
 - Focal lengths scale like the distance between quadrupoles (G~N_d)
 - Quadrupoles must get shorter due to shrinking cell length (G~N_d)
- If we go from a DBA to a 7BA, expect 10-to-20-fold increase in required gradients
 - In reality, 5-fold increase is being contemplated (e.g., APS upgrade)
 - Keep quadrupoles longer in order to restrain gradients
 - Reduce space between magnets to alleviate pressure lengths

Scaling of Sextupole Strengths

- Explanation:
 - Dispersion scales like $1/N_d^2$
 - Tune and therefore natural chromaticity scale like N_d
 - Assumed here that sextupole length was fixed
- If we go from a DBA to a 7BA, expect ~50-fold increase in required sextupole strengths
 - This is very close for a MAX-IV-style lattice replacing the existing APS ring

Scaling of Magnet Bores

- Assumed pole-tip field was fixed at 1 T
- If we go from a DBA to a 7BA, expect
 - 12-fold (6-fold) decrease in quadrupole (sextupole) bore radii
 - E.g., 3-6 mm bore radii for an APS 7BA replacement ring!
- In reality
 - 3rd generation ring magnets often have low pole tip fields
 - 4th generation ring magnets must be pushed further into saturation
 - ⁻ 4th generation rings must have closer spacing of magnets to maximize length
 - ~ ~12 mm bore radius seems workable for several projects

Scaling of Alignment Requirements

- Misalignment of magnets creates various issues
 - Misaligned quads/gradient dipoles create orbit errors
 - Misaligned sextupoles create optical errors
- Scaling of orbit amplification factors is weak, partly beneficial
 - Although gradients are stronger, beta functions are smaller
- Scaling of beta-beat factor per unit displacement is very strong
 - Tends to scale with sextupole strength ($\sim N_d^3$) and number ($\sim \sqrt{(N_d)}$)
 - Moderated again by reduction in beta functions
 - Implication is that ~150 μ m alignment requirement for 3GSRs becomes 5-15 μ m
 - For APS upgrade, using 30 μm with assumed LOCO-based correction

Nonlinear Dynamics Issues

- Focusing elements have chromatic aberrations
 - Sextupole magnets added to correct these
 - Introduces higher-order aberrations that limit dynamic acceptance
 - Scaling analysis indicates that dynamic acceptance decreases like 1/N_d²
 - Indicates that injection efficiency will be a challenge
- Lattices have higher-order chromaticity from sextupoles, gradient dipoles, etc.
 - Scaling study indicates these increase like N_d^{1.6}
 - Momentum acceptance expected to drop precipitously
 - Indicates that Touschek lifetime will be a challenge
- Modern approaches to nonlinear dynamics optimization fight against this
 - Inclusion of many families of sextupoles, as well as octupoles^{1,2}
 - Resonant driving term minimization and cancellation schemes^{3,2,4}
 - Tracking-based optimization of dynamic and momentum acceptance⁵
- In addition
 - Top-up allows entertaining shorter lifetimes than previously
 - On-axis "swap-out" injection allows working with small DA⁶

1:S.C.Leemann *et al.*, PRSTAB.12.120701; 2:L.Farvacque *et al.*, IPAC13, 79; 3:J.Bengtsson, SLS Note 9/97. 4:Y.Cai *et al.*, PRSTAB.15.054002; 5: See ref. list in M. Borland *et al.*, J. Synch. Rad., **21** (2014); 6: L. Emery *et al.* PAC03, 256.

APS Upgrade Lattice

APS today: 7 GeV, 100 mA Double-bend sectors 3100 pm emittance

Proposed upgrade: 6 GeV, 200 mA Hybrid 7-bend sectors 67 pm emittance

- Upgrade lattice is modeled after ESRF's Hybrid MBA design¹
- Four longitudinal gradient dipoles (LGDs), three transverse gradient (dipoles)
- LGDs help create dispersion bump that decreases sextupole strength ~3-fold compared to MAX-IV-style lattice
- TGDs help provide requisite phase advance between dispersion bumps to cancel some sextupole kicks

1:L.Farvacque et al.,IPAC13, 79;

Dipole Parameters

Name	Length	Angle	B_0	B'		
	m	deg	Т	T/m		
M1 (x80)						
M1.1	0.153	0.279	-0.636	-0.000		
M1.2	0.203	0.238	-0.410	-0.000		
M1.3	0.612	0.423	-0.241	-0.000		
M1.4	0.744	0.314	-0.147	-0.000		
M1.5	0.388	0.141	-0.127	-0.000		
M2 (x	80)					
M2.1	0.386	0.127	-0.115	-0.000		
M2.2	0.345	0.133	-0.134	-0.000		
M2.3	0.557	0.343	-0.215	-0.000		
M2.4	0.321	0.243	-0.264	-0.000		
M2.5	0.508	0.462	-0.318	-0.000		
M3 (x	80)					
M3.1	0.390	0.617	-0.553	45.372		
M3.2	0.390	0.617	-0.553	45.372		
M4 (x	M4 (x40)					
M4.1	0.325	0.562	-0.605	47.215		
M4.2	0.325	0.562	-0.605	47.215		

Present APS dipoles: 0.6 T field with no gradient

Two types of 5-segment longitudinal-gradient dipole.

Segments have variable length.

Up to 5-to-1 field ratio within magnet.

Curved magnets to preserve GFR.

Want ±5% variable gradient.

Quadrupole Parameters

	B'	K_1	Length	Element Name
	T/m	$1/m^2$	m	
Vanadium permendur pole tips	-72.1	3.601	0.238	Q1
with mushioom poles requ	55.8	-2.787	0.238	Q2
All carbon steel construction wit	45.1	-2.256	0.238	Q3
mushroom poles. Could use VP	-64.1	3.203	0.238	Q4
tips to reduce lengths.	-33.9	1.693	0.238	Q5
	48.9	-2.444	0.238	$\mathbf{Q6}$
vanadium permendur pole tips	-71.3	3.562	0.438	Q7
windings.	-81.8	4.086	0.592	$\mathbf{Q8}$

In contrast, present APS quadrupoles are 0.5-0.8 m in length with gradients of less than 21 T/m $\,$

Sextupole Parameters

Element Name	Length	K_2	$B^{\prime\prime}$
	m	$1/m^3$	T/m^2
S01A:S1	0.256	-165.1	3305.2
S01A:S2	0.256	227.1	-4545.4
S01A:S3	0.256	-151.3	3028.4
S01B:S3	0.256	-155.9	3121.1
S01B:S2	0.256	230.7	-4616.7
S01B:S1	0.256	-153.0	3061.5
S02A:S1	0.256	-157.5	3151.3
S02A:S2	0.256	227.5	-4553.2
S02A:S3	0.256	-155.9	3120.5
S02B:S3	0.256	-152.3	3048.2
S02B:S2	0.256	233.1	-4665.7
S02B:S1	0.256	-157.0	3142.4

Sextupole pattern repeats every two sectors, giving more knobs for nonlinear dynamics optimization.

Optimization is entirely tracking-based, emphasizing DA and Touschek lifetime

Two groups of magnets:

- S1/S3: < 3310 T/m²
- S2: <4700 T/m²

S1/S3 magnets will also include steering windings.

Present APS sextupoles are 0.25 m in length with strength of less than 500 T/m²

Dynamic Acceptance

- DA was evaluated by 6D tracking with elegant for 1000 turns
- Included 100 ensembles of random errors and "commissioning" simulation¹
- Included nominal multipole errors from
 - 3D magnet designs²
 - Scaling of NSLS-II measured results³
 - Estimates from Halbach's method⁴
 - See backup slide for more detail
- DA is only adequate for on-axis injection
- Relatively insensitive to most multipole errors
 - DA is very small, dominated by strong sextupoles
 - Most harmful error is unallowed multiples in quadrupoles
 - If attempting to achieve larger DA, better magnet quality would be needed
- Also developed⁵ a higher-emittance lattice with DA sufficient for accumulation
 - Same errors have much greater impact on DA
 - 1: V. Sajaev (ANL); 2: M. Jaski (ANL), V. Kashikin (FNAL); 3: A. Jain (BNL); 4: K. Halbach, NIM **74-1**, 147 (1969); 5: Y.P.Sun (ANL).

Local Momentum Acceptance

- LMA evaluated in same way as DA
- Also relatively insensitive to most multipole errors
 - Most harmful error is again unallowed multipoles in quadrupoles
- Earlier, we tried putting steering coils on all quadrupoles
 - Made LMA significantly worse
- Higher-emittance variant has similar but larger LMA compared to nominal design
 - Seems no more sensitive to errors than the nominal design
- This LMA is sufficient to get workable Touschek lifetime provided a bunch-lengthening cavity is used
 - Further improvement possible using octupoles^{1,2}
- 1: P. Raimondi (ESRF); 2: Y.P.Sun (ANL)

"Magnet-Aware" Accelerator Design

- All accelerator design relies on a model of the magnet capabilities
 - Typically, just the maximum strength of the main components
 - First pass might just use estimates from hand calculations
- To quickly converge on a design, more is needed
- For APS, benefited from curves of maximum B^L vs L
 - This non-linear function was obtained from 3D magnet models
 - We derated the B_nL(L) curves to allow explicit overhead for lattice flexibility and evolution
- Similarly, tracking-based optimization could benefit from
 - Early knowledge of magnet quality
 - Early inclusion of end effects
 - Typically, these are put in only after optimization as a check
- An open repository of magnet design information in a standardized format could be very useful jump-starting future accelerator designs

Other Magnet-Related Issues

- To save space, combining functions on many magnets
 - Strong gradient dipoles with ±5% gradient variation
 - Some quads (with low beta) have steering windings
 - Use eight-pole magnets for H/V steering plus skew quads¹
- Need space between poles and between coils to extract photons
 - Particular problem for large rings since photon beams pass through many magnets
 - Limits K of undulator magnets, limits use of helical and vertically-deflecting devices

- For APS upgrade, this has a significant impact on the magnets
 - Limits field quality in the sextupoles
 - Limits field quality and strength in the eight-poles

1: A. Jain, C. Spataro (BNL)

M. Borland, 4th generation storage ring light sources, BeMa2014

Summary of Requirements for Magnets

- Significantly larger gradients and sextupole strengths
- Very strong, curved combined-function dipoles
 - Measurement and alignment not simple!
- Smaller bore diameters, e.g., 25 mm instead of 80 mm
 - Limited by vacuum system and impedance constraints
- Accommodation of photon channel imposes constrains on magnet quality, strength
- Closer spacing, e.g., as little as 50 mm instead of typ. >150 mm
- Combined functions on steering, skew quads, etc.
- Tighter alignment, e.g., 30 μm instead of 150 μm
- Early knowledge of detailed magnet properties can aid convergence of the design
- Field quality requirements not terribly difficult if swap-out is used
 - Will be somewhat harder with accumulation

Backup Slides

Tables of multipole errors used in simulations

Order	$\begin{array}{c} \mathrm{P1} \\ \mathrm{10}^{-4} \end{array}$	$\begin{array}{c} \mathrm{P2} \\ 10^{-4} \end{array}$	$\begin{array}{c} \mathrm{P3} \\ 10^{-4} \end{array}$	$\begin{array}{c} \mathrm{P4} \\ 10^{-4} \end{array}$	$\begin{array}{c} \mathrm{P5} \\ 10^{-4} \end{array}$
1	-3.5	-0.2	1.2	0.6	1.8
2	-7.5	11.5	3.0	1.3	-2.7
3	0.3	0.1	0.1	-0.0	-0.1
4	-2.0	-0.2	-0.5	-0.3	-0.2
5	-0.0	-0.0	-0.0	-0.0	-0.0
6	0.4	-0.1	-0.1	-0.0	-0.0
7	0.0	0.0	-0.0	0.0	-0.0
8	-0.1	-0.0	-0.0	0.0	0.0

M1 and M2 dipoles systematic normal multipole errors from 3D models

Order	Normal 10^{-4}
2	-8.0
3	-11.0
4	-11.0
5	-1.0
6	8.0
7	11.0
8	-5.0

M3 and M4 dipoles systematic multipole errors from 3D models

Reference radius: 10 mm

Tables of multipole errors used in simulations

Quadrupole systematic
normal multipole errors
(from 3D models)

Order	$\begin{array}{c} \text{Q1-Q6} \\ 10^{-4} \end{array}$	$Q7-Q8 \\ 10^{-4}$
5	4.9	12.5
9	-4.2	-4.2
13	-2.5	-2.7
17	0.0	-0.1

Quadrupole random multiple errors (scaled from NSLS-II)

Order	Normal 10^{-4}	$\frac{\text{Skew}}{10^{-4}}$
2	10.5	16.5
3	12.5	3.5
4	3.0	3.0
5	5.5	2.0
6	1.5	2.0
7	2.0	1.0
8	0.5	0.5
9	1.0	0.5
10	0.5	0.5
11	0.5	0.5
12	0.5	0.5
13	0.5	0.5
14	0.5	0.5
15	0.5	0.5
16	0.5	0.5
17	0.5	0.5
18	0.5	0.5
19	0.5	0.5

Reference radius: 10 mm

Tables of multipole errors used in simulations

Sextupole systematic
normal multipole errors
(from 3D models)

Order	$\begin{array}{c} \text{Normal} \\ 10^{-4} \end{array}$
8	-302.5
14	-13.2

These are large because the pole tips must be truncated to make room for the photon channel.

Sextupole random multiple errors (from Halbach theory)

Order	Normal 10^{-4}	$\frac{\text{Skew}}{10^{-4}}$
1	0.0	0.0
2	0.0	0.0
3	8.9	8.9
4	9.1	5.5
5	4.5	0.9
6	2.6	1.8
7	0.7	0.7
8	0.8	0.3

Reference radius: 10 mm

Design Your Own Ring

- A free Android app is available that lets you explore storage ring scaling
- Also synchrotron radiation calculations, FELs, top-up/swap-out, magnets, etc.

I Indulator estimation

Search for "Michael Borland TAPAs" on the Google Play store

Magnet estimation

i ting t	oouning	magnet	countation	Ondulator	countation		nation
100 🖙 26° 🖬 Ô	* 4 3 and 82% i 11:40		≉ 49 11:44	101 🖾 26° 🖬 🛈	* 46	101 🖾 26° 🖬 🛈	* 49
Storage	e Ring Scaling	Iron-Dominate	ed Multipole Magnets	Hybrid Per	rmanent Magnet Undulate	Ming Xie FEL	Parametrization
Reference Ring	5	Туре		Magnet Type:		Beam Energy (GeV) [.]	6
ESRF_II -		Octupole 👻		DejusNdFeB 🔻			°
	c.	n:	3	Enter any two quanti	ities. then	Peak Current (kA):	3
Energy (Gev):	0	Kn (1/m^(n+1)):	9000	press Compute to de	etermine the third.	Norm. Emit. (um):	0.2
Cells:	40			Period (mm):	Compute 23		
Circumference (m):	1055	Beam Energy (GeV)	6		Computer 10.5	Frac. Energy Spread (%):	0.01
Emittance (nm):	0.0727	Half gap (mm):	26	Full mag. gap (mm).	Computer 10.5	Beta (m):	4.3
Energy spread (%): Mom_compaction:	0.0929 5.6294E-5	Bn (T/m^n) [.]	1 8012E5	В (Т):	Compute 0.5368		
En. Loss/Turn (MeV):	: 2.3688	BTip (T):	0.5276	К:	1.1527	Undulator Period (mm):	23
Horizontal Damping Time (ms):	12.761	NI (kAmp*Turns):	2.7293	Energy (GeV)	6	Undulator K:	1.1527
Longitudinal Damping Time (ms):	11.123			Ph. Energy (keV): Wavelength (A):	8.9304 1.3883	Pierce Param.: Rad. wavelength (A):	0.001094 1.388
Overvoltage:	1.5					Photon Energy (keV): Gain Length (m):	8.931 1 397
Rf Freq. (MHz):	351.794371					Startup Power (kW):	2.486
Harmonic Number:	1238					Saturation length (m):	24.893
Rms Duration (ps): Bucket HH (%):	13.24 3.1604					Eta Émittance: Eta Energy Spread:	0.346 0.053

M. Borland, PAC13, 1364-1366 (2013).

Ring scaling

FEL estimation