# Beam dynamics and lattice proposal for SLS-2

Andreas Streun, PSI

2<sup>nd</sup> workshop "Beam Dynamics meets Magnets" Bad Zurzach, Dec. 1-4, 2014

#### Contents

- The new generation of storage rings
- The SLS and the SLS-2 upgrade charge
- A compact low emittance lattice concept: Longitudinal gradient bends and Anti-bends
- Lattice designs work in progress
- Magnets for SLS-2
- Design tasks, challenges and perspectives
- Conclusion

# A revolution in storage ring technology

#### Pioneer work: MAX IV (Lund, Sweden)



⇒ Emittance reduction from nm to 10...100 pm range

# The storage ring generational change



# New storage rings and upgrade plans

| Name             | Energy [GeV] | Circumf. [m] | Emittance* [pm]         | Status      |
|------------------|--------------|--------------|-------------------------|-------------|
| PETRA-III        | 6.0          | 2304         | $4400 \rightarrow 1000$ | operational |
|                  | 3.0          |              | 85 (round beam)         |             |
| MAX-IV           | 3.0          | 528          | $328 \rightarrow 200$   | 2015        |
| SIRIUS           | 3.0          | 518          | 280                     | 2016        |
| ESRF upgrade     | 6.0          | 844          | 147                     | 2019        |
| DIAMOND upgrade  | 3.0          | 562          | 275                     | started     |
| APS upgrade      | 6.0          | 1104         | 65                      | study       |
| SPRING 8 upgrade | 6.0          | 1436         | 68                      | study       |
| PEP-X            | 4.5          | 2200         | $29 \rightarrow 10$     | study       |
| ALS upgrade      | 2.0          | 200          | 100                     | study       |
| ELETTRA upgrade  | 2.0          | 260          | 250                     | study       |
| SLS now          | 2.4          | 288          | 5500                    | operational |
| SLS-2            | 2.4 (?)      | 288          | 100-200 ?               | 2024 ?      |

#### \*Emittance without $\rightarrow$ with damping wigglers

A. Streun, PSI: Beam dynamics and lattice proposal for SLS-2

BeMa-2, Bad Zurzach, Dec .1-4, 2014

# The SLS



- 288 m circumference
- 12 × TBA (triple bend achromat) lattice
- straight sections:  $6 \times 4$  m,  $3 \times 7$  m,  $3 \times 11.5$  m
- FEMTO chicane for laser beam slicing
- 3 normalconducting 3T superbends
- Emittance 5.5 nm at 2.4 GeV (5.0 nm without FEMTO)
- User operation since June 2001
- 18 beam lines in operation

# SLS-2 design constraints and the main challenge

### Constraints

- keep circumference: hall, tunnel.
- re-use injector: booster, linac.
- keep beam lines: avoid shift of source points.
- Iimited "dark time" for upgrade.
- Challenge: small circumference
  - Multi bend achromat:  $\mathcal{E} \propto (\text{number of bends})^{-3}$
  - Damping wigglers (DW):  $\mathcal{E} \propto \frac{\text{ring}}{\text{ring} + \mathbf{DW}}$  radiated power
  - ⇒ Low emittance from MBA and/or DW requires space !
  - $\Rightarrow$  Scaling MAX IV to SLS size and energy gives  $\varepsilon \approx 1 \text{ nm}$ .

# **Compact low emittance lattice concept**

- Longitudinal gradient bends (LGB): field variation B = B(s)
  - $\varepsilon \propto \int (dispersion^2...) \times (B-field)^3 ds$
  - $\rightarrow$  high field at low dispersion and v.v.
- Anti-bends: B < 0</li>
  - matching of dispersion to LGB
- ⇒ factor  $\approx$  5 lower emittance compared to a conventional lattice
- Additional benefits
  - Hard X-rays ( $\approx 80 \text{ keV}$ ) from B-field peak ( $\approx 5 \text{ Tesla}$ )
  - ε-reduction due to increased radiated power from high field and from Σ|angle|>360° ("wiggler lattice")

AS & A. Wrulich, NIM A770 (2015) 98–112; AS, NIM A737 (2014) 148–154





### A compact low emittance cell

- Conventional cell vs. longitudinal-gradient bend/anti-bend cell
  - both: angle 6.7°, E = 2.4 GeV, L = 2.36 m,  $\Delta \mu_x = 160^\circ$ ,  $\Delta \mu_y = 90^\circ$ ,  $J_x \approx 1$



A. Streun, PSI: Beam dynamics and lattice proposal for SLS-2

# Longitudinal gradient bends

$$\mathcal{E} \propto I_5 = \int_L |b(s)|^3 \mathcal{H}(s) ds \quad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta}$$

- Longitudinal field variation b(s) to compensate  $\mathcal{H}(s)$  variation
- Beam dynamics in bending magnet
  - Curvature is source of dispersion:  $\eta''(s) = b(s) \rightarrow \eta'(s) \rightarrow \eta(s)$
  - Horizontal optics ~ like drift space:  $\beta(s) = \beta_0 2\alpha_0 s + \frac{1+\alpha_0^2}{\beta_0} s^2$
  - Assumptions: no transverse gradient (k = 0); rectangular geometry
- Variational problem: find extremal of  $\eta(s)$  for  $I_5 = \int_L f(s, \eta, \eta', \eta'') ds \rightarrow \min$  with functional  $f = \mathcal{H}(s, \eta, \eta', \eta'') |\eta''|^3$ 
  - too complicated to solve
    - mixed products up to  $\eta^{\prime\prime\prime\prime}$  in Euler-Poisson equation...
- → special functions b(s), simple (few parameters): variational problem → minimization problem
- $\rightarrow$  numerical optimization

orbit curvature

b(s) = B(s)/(p/e)

# **Numerical optimization**

- Half bend in N slices: curvature  $b_i$ , length  $\Delta s_i$
- Knobs for minimizer:  $\{b_{i}\}, \beta_{0}, \eta_{0}$
- Objective:  $I_5$
- Constraints:
  - length:  $\Sigma \Delta s_i = L/2$
  - angle:  $\Sigma b_i \Delta s_i = \Phi/2$
  - [field:  $b_i < b_{max}$ ]
  - [optics:  $\beta_0$ ,  $\eta_0$ ]
- **Results:** 
  - hyperbolic field variation (for symmetric bend, dispersion suppressor bend is different)
  - Trend:  $b_0 \rightarrow \infty$ ,  $\beta_0 \rightarrow 0$ ,  $\eta_0 \rightarrow 0$



9/18



Ι

# **Optimization with optics constraints**

- Numerical optimization of field profile for fixed  $\beta_0$ ,  $\eta_0$ 
  - Emittance (F) vs.  $\beta_0$ ,  $\eta_0$  normalized to data for TME of hom. bend



small (~0) dispersion at centre required, but tolerant to large beta function

# Anti-bends

- General problem of dispersion matching:
  - dispersion is a horizontal trajectory
  - dispersion production in dipoles  $\rightarrow$  "defocusing":  $\eta$  " > 0
- Quadrupoles in conventional cell:
  - over-focusing of horizontal beta function  $\beta_x$
  - insufficient focusing of dispersion  $\eta$
- $\Rightarrow$  disentangle  $\eta$  and  $\beta_x$ !
- use negative dipole: anti-bend
  - kick  $\Delta \eta' = \psi$ , angle  $\psi < 0$
  - out of phase with main dipole
  - negligible effect on  $\beta_x$ ,  $\beta_y$
- Side effects on emittance:
  - main bend angle to be increased by  $2|\psi|$
  - anti-bend located at large  ${\cal H}$
  - $\rightarrow$  in total, still lower emittance -



## SLS-2 lattice design status



• Various concept lattice designs for 100-200 pm

- based on a 7-bend achromat arc.
- Iongitudinal gradient superbends of 4-6 T peak field.
- anti-bends for dispersion matching.
- small octupoles for acceptance optimization.
- beam pipe / magnet bore  $\emptyset$  20 / 26 mm.

## a) ultra-low emittance lattice



 $\mathbf{V}$  ultra-low emittance:  $\boldsymbol{\varepsilon} = 73 \text{ pm} ! (\approx 18 \text{ m} / 30^\circ \text{ arc at } 2.4 \text{ GeV})$ 

- $\mathbf{M} \approx$  feasible magnets,  $\approx$  sufficient dynamic aperture
- Solution large normalized chromaticities  $-\xi/Q = 3.9/4.3$
- **E** quasi isochronous (MCF  $\alpha = -5 \cdot 10^{-5}$ ) and nonlinear
- too short bunches, insufficient energy acceptance



# Longitudinal Dynamics



Bucket size limited by non-linear roll-off in momentum compaction

- Lattice is below transition
- Higher orders of momentum compaction calculated using TPSA.
- Goal: ±5% bucket.
- Possible solution: use multipoles to manipulate nonlinear momentum compaction to widen bucket.

# b) back down lattice



 $\mathbf{V}$  acceptable emittance:  $\boldsymbol{\varepsilon} = 183 \text{ pm}$ 

 $\mathbf{M} \approx$  feasible magnets,  $\approx$  sufficient dynamic aperture

 $\checkmark$  large MCF ( $\alpha = +1.3 \cdot 10^{-4}$ )  $\rightarrow$  bunch length & E-acceptance  $\checkmark$ 

**E** large normalized chromaticities  $-\xi/Q = 4.1 / 6.5$ 

# c) symmetric lattice "below transition"



Period-12 lattice: 12×6.5 m straights, identical cells (tunes 0.4/0.1)

- **\mathbf{M}** good emittance:  $\boldsymbol{\varepsilon} = 126 \text{ pm}$
- $\blacksquare$  large negative MCF ( $\alpha = -10^{-4}$ )  $\rightarrow$  "below transition"
- $\mathbf{M}$  very low horizontal normalized chromaticity  $-\xi_x/Q_x = 1.6$
- ✓ first-order cancellations of sextupole resonances, good acceptance

# **Period-12** lattice

- No use for long (>10 m) straights.
- $6 \times 4$  m,  $3 \times 7$  m,  $3 \times 11.5$  m  $\rightarrow 12 \times 6.5$  m
- most beam lines / users would win.
  - Iong in vaccum undulators, higher flux.
  - two undulators for different photon energies in one straight.
- periodicity facilitates optimization of dynamic acceptances.
- move/realign all beam lines.
- conflict with tunnel wall.

SLS now SLS-2 period-12

Beam-Line 45

40°

site concrete wall movable shielding blocks

A. Streun, PSI: Beam dynamics and lattice proposal for SLS-2

(29)

# d) Period-3 split long straight lattice



 $3 \times 6.2 \text{ m}$ ,  $6 \times 3.6 \text{ m}$  and  $3 \times (5 + 5) \text{ m}$  straights



Dynamic aperture for <sup>™</sup>period-12 (c) and period-3 (d) <sup>1</sup> lattice

A. Streun, PSI: Beam dynamics and lattice proposal for SLS-2

BeMa-2, Bad Zurzach, Dec .1-4, 2014

# **Comparison of SLS-2 draft designs**

|                                         | SLS        | MAX IV      | a) ad05f    | <b>b)</b> ah04n | <b>c)</b> ca05q | <b>d)</b> ca06b |
|-----------------------------------------|------------|-------------|-------------|-----------------|-----------------|-----------------|
| Circumference [m]                       | 288        | 528         | 288         | 288             | 288             | 288             |
| Periodicity                             | 1 (3)      | 20          | 3           | 3               | 12              | 3               |
| $\Sigma$  bend angle                    | 375°       | 360°        | 460°        | 391°            | 504°            | 504°            |
| Tunes                                   | 20.43/8.74 | 42.20/16.28 | 39.42/10.76 | 39.39/10.76     | 37.28/9.12      | 37.68/10.78     |
| -Chroma/Tune                            | 3.3/2.4    | 1.2/3.1     | 3.9/4.3     | 4.1/6.5         | 1.6/5.0         | 1.6/4.5         |
| Mom. comp. [10 <sup>-4</sup> ]          | 6.1        | 3.1         | -0.5        | 1.3             | -1.0            | -1.0            |
| Damping part. J <sub>x</sub>            | 1.00       | 1.85        | 1.36        | 1.13            | 1.41            | 1.41            |
| Hor. Acc.*[mm mrad]                     | 27         | 18          | 2.2         | 3.3             | 10              | 6.4             |
| ∆p/p. Acc.* [%]                         | 3.0        | 6.8         | 2.2         | 3.9             | 4.5             | 3.4             |
| Energy [GeV]                            | 2.4        | 3.0         | 2.4         | 2.4             | 2.4             | 2.4             |
| Emittance [pm]                          | 5558       | 328         | 73          | 183             | 126             | 126             |
| Energy loss [keV]                       | 548        | 363         | 610         | 466             | 730             | 736             |
| $\Delta E/E$ spread [10 <sup>-3</sup> ] | 0.86       | 0.77        | 1.13        | 1.04            | 1.21            | 1.24            |

\* max. horizontal betatron amplitude and momentum deviation of stable particles in ideal lattice

A. Streun, PSI: Beam dynamics and lattice proposal for SLS-2

# Longitudinal gradient superbend

- Hyperbolic field shape
  - rough approximation is sufficient.
- Narrow peak of high field:
  - emittance minimization.
  - limitation of heat load and radiated power.
- Benefits of high field:
  - Hard X-rays available at a 2.4 GeV ring.
  - Photon BPMs for orbit correction.
  - X-ray pinholes for beam size measurements.



Photon energy [keV]

#### LGSB predecessors

V. Shkaruba et al., Superconducting high field three pole wigglers at Budker INP,
NIM A448 (2000) 51–58 ⇒

D. Robin et al., Superbend project at the Advanced Light Source, PAC-2001 ↔ ↓







# Anti-bend

- Anti-Bend: inverse field, B < 0
- Low field, long magnet
  - emittance contribution  $\propto |B|^3 \mathcal{H} L$
  - $\mathcal{H}$  is large and  $\approx$ constant at anti-bend.
- Strong horizontal focusing, dB/dx > 0
  - needed for optics at location out of phase with main bend.
  - manipulation of damping partition to get lower emittance:
    - vertical focusing in normal bend.
    - horizontal focusing in anti-bend.
- anti-bend = off-centered quadrupole.
- most convenient magnet design = half quadrupole.





# SLS-2 design tasks and challenges

- Optimize dynamic lattice acceptances to provide sufficient injection efficiency and beam lifetime.
- Prevent and suppress instabilities due to interaction of electron beam with narrow beam pipe.
- Minimize blow-up of emittance due to intra-beam scattering.
- Set tolerances for magnets and girders.
- Establish methods for beam based alignment in commissioning.
- Develop orbit feed-back based on photon BPMs.
- Explore limits of vacuum chamber and magnet miniaturization.
- Explore round beam schemes.
- Explore on-axis injection schemes

# Conclusion

- SLS-2 design is handicapped by comparatively small ring circumference.
- But the new LGB/AB cell provides a solution for compact low emittance rings.
- An emittance of 100-200 pm seems possible with contemporary magnet technology.
- But feasibility has not yet been proven.
- A conceptual design report is planned for 2016.