

The PSI Particle Accelerators

Thomas Schietinger

with help from Joachim Grillenberger, Andreas Streun, and many others

PSI, 16 July 2014

Content

- The 1970s: the Proton Ring Cyclotron
- The 1980s: the High-Power Upgrade
 - Proton therapy
- The 1990s: the Neutron Spallation Source SINQ
- The 2000s: the Synchrotron Light Source SLS
- The 2010s: the X-ray Free-Electron Laser SwissFEL
- The 2020s: SLS-2.0

Historical overview

In the 1970s...

In the 1970s...

...the Proton Ring Cyclotron

Cyclotron principle

Cyclotron patent, Ernest Lawrence, 1932

Early cyclotrons

Injection! for injection is needed! Extraction region Beam Oscillator Dee

Ring Cyclotron

• Advantage: Accelerating (RF resonators) and bending (magnets) components can be separated into sectors

• Disadvantage: A dedicated accelerator

Gap

chegg.com

Ring Cyclotron

- Advantage: Accelerating (RF resonators) and bending (magnets) components can be separated into sectors
- Disadvantage: A dedicated accelerator for injection is needed!

PSI ring cyclotron

Parameter	Value
Sector magnet field	0.6–0.9 T
Magnet weight	250 t
Cavity voltage	850 kV
Frequency	50.63 MHz
Beam energy	$72 \rightarrow 590 \text{ MeV}$
Beam current (max.)	2.4 mA
Extraction radius	4.5 m
Number of turns	185
Relative losses (2.4 mA)	1–2 x 10 ⁻⁴

р

Proton cyclotron in 1974

Proton cyclotron in 2009

Thomas Schietinger (SH84)

Thomas Schietinger (SH84)

Original injector cyclotron

- Commercial cyclotron (Philips, 1972)
- 72 MeV energy, limited current
- Later used stand-alone for isotope production
- Decommissioned since 2010
- Will be shipped to China for further use.

PSI Summer St

In the 1980s...

Thomas Schietinger (SH84)

7 💿 8 🗨 9 🖲 4 💭 5 💭 6 🕲

CASIO

PSI Summer Student Lecture, 16 July 2014

SONY

WALKWOC

...the High-Power Upgrade

PSI Summer Student Lecture, 16 July 2014

ina.g.iot no.g.it	
Cavity voltage (50 MHz)	450 kV
Cavity voltage (150 MHz)	40 kV
Beam energy	$0.87 \rightarrow 72 \text{ MeV}$
Beam current (max.)	2.7 mA
Extraction radius	3.5 m
Number of turns	81

Also ring cyclotron design

n

Cockcroft-Walton Pre-Accelerator

Parameter	Value
Beam energy	870 keV
Beam current (max.)	30 mA
Beam current (op.)	10 mA

HV cascade 810 kV

lon source Diodes Acceleration tube Acrylic glass filled with SF₆

PAUL SCHERRER INSTITUT

Isolation Transformers

Development of peak current

year

Proton sources worldwide

Applications of the proton facility

- Main interest is in secondary particles. Two targets (thick and thin) produce:
 - Pions
 - elementary particle research (rare decays)
 - early trials with particle therapy ("piotron")
 - Muons (decay product of pions)
 - Elementary particle research (decay constants, rare decays, e.g., $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$).
 - Muon spin spectroscopy (µSR) use the muon as a magnetic spin probe in materials.
- Neutron production:
 - Small lead spallation source (since 2010) for the production of ultra-cold neutrons (elementary particle research, e.g. neutron EDM)
 - Large lead spallation source (since 1994) for the production of a wide spectrum of neutrons (\rightarrow SINQ)
- Protons: no direct scientific application, but proton therapy
 - Initially directly at the proton cyclotron
 - Now with a dedicated small cyclotron (\rightarrow PROSCAN project)

PAUL SCHERRER INSTITUT

Graphite target wheel (target station E)

Proton Facility Layout (HIPA)

Proton therapy – PROSCAN

Radiation facility (Gantry) for proton therapy.

Why protons?

COMET cyclotron

- Compact cyclotron optimized for proton therapy
- Collaboration between PSI and industry (Accel, now Varian)

Parameter	Value
Diameter	3.175 m
Height	1.38 m
Weight	90 t
Magnetic field	2.4–3 T
Beam energy	250 MeV
Beam current	1–850 nA
Number of turns	630

Project PROSCAN

In the 1990s...

In the 1990s...

...the Neutron Spallation Source (SINQ)

Neutron spallation

- Spallation: safer and more efficient than fission!
- Beam power on lead target: 0.75 MW
- Neutron flux: 10¹⁴ n/cm²/s

SINQ hall and beamlines

Neutron imaging (radiography)

Scanning of large objects without destruction, even during use (e.g. engines). Hidden objects become visible!

X-ray image

Neutron radiography

In the 2000s:

facebook.

In the 2000s:

facebook.

...the Synchrotron Light Source (SLS)

From the cyclotron to the synchrotron

- Cyclotrons and synchro-cyclotrons (larger orbit with increasing energy) become impractical at higher energies
- Synchrotron solution: one orbit for all energies!
 - The magnetic bending field must increase synchronous to the energy gain of the particles
 - The accelerator becomes a true ring!
 - So-called "strong-focusing" scheme allows efficient use of magnetic components
- All modern circular high-energy machines (HERA, Tevatron, LHC,...) are based on the synchrotron principle.

Accelerator types (Scientific American, May 1953)

Synchro-cyclotron

charges on the tubes are such as to give an accelerat-

ing kick. Cyclotron (bottom left) and synchro-cyclo-

tron (bottom center) send particles repeatedly through the same gap in larger and larger circles. Synchrotron (bottom right) keeps particles on same circular path for whole acceleration by changing the strength of the magnetic field that makes particles travel in circle.

SLS: two-ring concept!

- Booster synchrotron to accelerate electrons to 2.4 GeV
- Storage ring to keep electrons at constant energy for stable X-ray emission

Linear accelerator

Cvclotron

Synchrotron

Swiss Light Source (SLS)

Swiss Light Source (SLS)

Booster Synchrotron	
Beam energy	$0.1 \rightarrow 2.4 \text{ GeV}$
Circumference	270 m
Magnetic bending field	0.72 T
RF frequency	500 MHz
Peak RF voltage	0.5 MV
Beam current (max.)	12 mA

Storage Ring	
Beam energy	2.4 GeV
Circumference	288 m
Magnetic bending field	1.4 T
RF frequency	500 MHz
Peak RF voltage	2.6 MV
Beam current	400 mA
Radiation loss per turn	512 keV
Beam lifetime	~8 h

	Injection Linac	
	Beam energy	100 MeV
	RF frequency	2997.92 MHz
	Cycling rate	3.125 Hz
	Charge / pulse	1 nC
POLLUX UCIA Booster Sy Storage R	Injection linac Inchrotron Ring	IR TOMCAT TORESS SM

SLS tunnel

Storage Ring

Thomas Schietinger (SH84)

Two light sources...

PAUL SCHERRER INSTITUT

SLS spectral brightness
SLS spectral brightness

SLS spectral brightness

SLS beamlines (12/2013)

SLS applications (examples)

Microtomography

Blood vessels in the brain of mouse suffering from Alzheimer disease.

Protein Cristallography

Structures of two important enzymes of Malaria agent.

Phase Contrast Microscopy

Rat heart with conventional (left) and phase contrast X-ray imaging (right).

Nanolithography

Nanopattern edged with interfering X-ray beams.

In the 2010s...

Thomas Schietinger (SH84)

Thomas Schietinger (SH84)

PSI Summer Student Lecture, 16 July 2014

Injector

Linear Accelerator

the X-Pay Free-Fl

The SwissFEL Building Site

Distances and time-spans in nature and technology

PAUL SCHERRER INSTITUT

Thomas Schietinger (SH84)

Advancing knowledge through time resolution

© Irene Müller www.pbase.com/daria90

Advancing knowledge through time resolution

© Irene Müller www.pbase.com/daria90

Advancing knowledge through time resolution

Image: LCLS, SLAC

Round or straight?

Circular accelerator:

- Electrons continuously emit light
- Electron bunches diverge
- Ultra-short pulses are *not* possible (limit of ~100 ps from RF bunching)

Round or straight?

Circular accelerator:

- Electrons continuously emit light
- Electron bunches diverge
- Ultra-short pulses are *not* possible (limit of ~100 ps from RF bunching)

Linear accelerator:

- Electrons do not emit light
- Electron bunches remain compact
- Emission of ultra-short (order 10 fs) light pulses is possible thanks to "undulator"

MAN

compact electron bunch

Undulator radiation

The light waves of a certain wavelength add coherently (constructive interference), if

- the electron beam has high brightness (low emittance at high current)
- the magnets have the right spacing and gap (undulator parameter *K*)
- the undulator is long enough (gain length)

"Free-Electron Laser" (FEL)

Revolutionizing X-ray science

Thomas Schietinger (SH84)

X-ray FELs worldwide

SCSS, SPring-8, Japan

LCLS, SLAC, Stanford

European XFEL, DESY, Hamburg

X-ray FELs worldwide

			**** * * **	-
	LCLS (USA)	SCSS (Japan)	European XFEL	SwissFEL (CH)
Start of operation	2009	2011	2015	2017
Length [km]	3.0	0.75	3.4	0.7
Beam energy [GeV]	13.6	8	17.5	6
Min. wavelength λ _{min} [nm]	0.15	0.1	0.1	0.1
Peak brilliance at λ _{min} [10 ³³ photons/s/mm²/mrad²/0.1% BW]	2.4	5.0	5.0	1.3

Ingredients of an X-ray FEL

SwissFEL layout

SwissFEL key parameters				
Final electron energy	5.8 GeV			
RF frequency	3 / 5.7 GHz			
Bunch charge	10–200 pC			
Pulse duration	1–20 fs			
Repetition rate	100 Hz			
Photon wavelength	1–70 Å			

SwissFEL Construction Site (May 2014)

SwissFEL Construction Site (May 2014)

SwissFEL Construction Site (May 2014)

Project Schedule

Important milestones:

- **2010** Conceptual Design Report
- 2012 Approval by Swiss Parliament
- **2013** Start Construction
- 2014 Building Completed
- 2017 Start Operation (Phase 1)

Thomas Schietinger (SH84)

PSI Summer Student Lecture, 16 July 2014

SwissFEL Injector Test Facility

dipole

- Electron gun and first accelerating section (first • ~50 m of SwissFEL)
- Test of components and procedures needed for • SwissFFL
- Will be moved to final SwissFEL location in 2015 •

quadrupole

SwissFEL Injector Test Facility

Official inauguration (24 August 2010)

PAUL SCHERRER INSTITUT

Keep it simple for the Federal Councillor: one button, two signals

Button connected to laser shutter.

The Burkhalter beam:

- ~35 pC charge
- ~160 MeV energy
- ~0.5 MeV energy spread

Beam on LuAG screen in front of beam dump.

Signal from Wall Current Monitor after the RF gun.

Visit to the injector tunnel.

In the 2020s...

yankodesign.com

BMW ZX-6 concept

Thomas Schietinger (SH84)

In the 2020s...

...SLS-2.0!

yankodesign.com

BMW ZX-6 concept

SLS-2.0 Concept

- Improvements in magnet and other technologies allow more compact components.
- New ring design with many short bending magnets with *small deflection angles* gives *dramatic reduction in emittance*, therefore much *higher brilliance.*
- Design study in progress.
- Realization in the *period 2021–24* (if funding can be secured).

Image: ECOS

Summary

- By realizing about one large facility / upgrade per decade, the Paul Scherrer Institute has been able to stay competitive throughout a wide spectrum of natural sciences – since the 1970s!
- The availability of pions, muons, neutrons, and X-ray photons as probes in the same lab is worldwide unique.
- With SwissFEL under construction and SLS-2.0 on the horizon, the future looks even brighter!

Thank you for your attention!

Thomas Schietinger (SH84)

Spare slides...

Thomas Schietinger (SH84)

HIPA Layout

Neutron imaging

Scanning of large objects without destruction, even during use! The inner workings become visible.

Neutron radiography

X-ray image

	1990	First ideas for a Swiss Light Source	The VI
	1993	Conceptual Design Report	
June	1997	Approval by Swiss Government	
June	1999	Finalization of Building	
Dec.	2000	First Stored Beam	First Diffraction Image at SLS
June	2001	Design current 400 mA reached Top up operation started	on 11 th July, 2001
July	2001	First experiments	1.36
Jan.	2005	Laser beam slicing "FEMTO"	1.15A 1/3
May	2006	3 Tesla super bends	7.20
	2010	~completion: 18 beamlines	
Dec.	2011	Vertical emittance record: 1 pm	

SwissFEL site

PSI Summer Student Lecture, 16 July 2014

Thomas Schietinger (SH84)

SwissFEL Construction (Oct. 2013)

SwissFEL Construction (April 2014)

Microbunching

- Interaction with an external (seeding) wave or spontaneous undulator radiation (SASE) gives rise to density modulations along the bunch.
- Coherent emission of radiation of wavelength λ_L with power $P \sim N^2$.
- Increased field strength further amplifies the "micro-bunching".

- During the build-up of the micro-bunch density modulations the output intensity increases exponentially along the undulator
- At some point this process stops. This saturation point should be reached within an acceptable undulator length (SwissFEL: ~60 m)

Comparison to conventional Laser

LASER

FEL

Characteristics	Source of narrow, monochromatic and coherent light beams		
Configuration	Oscillator or amplifier		
First demonstration	1960	1977	
Laser medium	Solids, liquids, gases	Vacuum with electron beam in periodic magnetic field	
Energy storage	Potential energy of electrons	Kinetic energy of electrons	
Energy pump	Light or applied electric current	Electron accelerator	
Theoretical basis	Quantum mechanics	Relativistic mechanics and electrodynamics	
Wavelength definition	Energy levels of laser medium	Electron energy, magnetic field strength and period	

Comparison to conventional light source

	SLS	SwissFEL
Peak brilliance [photons/s/mm ² /mrad ² /0.1% BW]	10 ²¹	10 ³³
Average brilliance [photons/s/mm ² /mrad ² /0.1% BW]	5 × 10 ¹⁸	5 × 10 ²²
Total photon flux	8 × 10 ²⁰ (around the ring)	2.6 × 10 ¹²
Total photon power	200 kW	5 mW
Fractional energy loss of electrons to photons	100%	0.05%
Average electron current	400 mA	20 nA
Photon pulse length	100 ps	20 fs

⇒ SwissFEL is a very brilliant photon source, but a poor source in terms of total photon flux!

SwissFEL site

Site optimization (task force "forest")

PAUL SCHERRER INSTITUT

1st Meeting (Jan. 2010)

Temporary Forest Clearing	4.6 ha
Permanent Forest Clearing	4.4 ha
Additional Investment	- Mio.

5th Meeting (Sept. 2010)

Temporary Forest Clearing	4.2 ha
Permanent Forest Clearing	0.7 ha
Additional Investment	12.1 Mio.

High-Tech – embedded in nature

PAUL SCHERRER INSTITUT

18 October 2013

PSI-developed RF Gun

13:00:43

0 25

On-axis E-field

PSI Summer Student Lecture, 16 July 2014

Main Linac: C-band technology

- 2050 mm long structure
- 110 cells per structure
- 5712 MHz (C-band)
- 28.8 MV/m gradient

SwissFEL will contain 104 C-band structures organized in 24 linac modules (236 MeV energy gain per module). Dedicated test stand set up (PSI East).

- Pulse compressor (SLED):
- accumulates the energy of the incoming "long" pulse and releases a short pulse
- 40 MW, 2.5 μs → 120 MW, 0.5 μs
 0 = 220/000
- Q = 220'000

Undulator development (hard X-ray)

- Hybrid in-vacuum undulator
- 266 periods, each 15 mm
- Magnetic length 3990 mm
- Magnetic material: Nd₂Fe₁₄Br + diffused Dy
- Gap varies between 3 and 20 mm
- At a gap of 4.2 mm, maximum B_z is 1 T

The SwissFEL ARAMIS beamline will comprise 12 undulators of this type. Test of prototype in injector test facility in Jan./Feb.!

Photon beamline (hard X-ray)

PSI Summer Student Lecture, 16 July 2014

Photon beamline (soft X-ray)

