Fixed-target serial X-ray crystallography in in-situ chips and on low-Z polymer sample supports

Michael Heymann, old: Seth Fraden, Brandeis University new: Henry Chapman, CFEL, DESY

valves

Hansen, C.L., Classen, S., Berger, J.M., Quake, S.R., A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination, JACS, 2006 128:10, 3142-3

Gerdts, C.J., Elliott, M., Lovell, S., Mixon, M.B., Napuli, A.J., Staker, B.L., Nollert, P., Stewart, L., The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS), Acta Crystallography D, 2008, 64:11, 1116-22

Guha, S., Perry, S.L., Pawate, A., Kenis, P.J.A., Fabrication of X-ray compatible microfluidic platforms for protein crystallization, Sensors and Actuators B, 2012, 174, 1-9

Zheng, B., Tice, J.D., Roach L.S., Ismagilov, R.F., A Droplet-Based, Composite PDMS/Glass Capillary Microfluidic System for Evaluating Protein Crystallization Conditions by Microbatch and Vapor-Diffusion Methods with On-Chip X-Ray Diffraction," Angew. Chem. Int. Edit. 2004 43: 2508-2511

cryo

J.U. Shim, G. Cristobal, D.R. Link, T. Thorsen, Y. Jia, K. Piattelli, S. Fraden, *JACS*. 129, 8825 - 8835 (2007) J.U. Shim, G. Cristobal G, D.R. Link, T. Thorsen, S. Fraden, *Crystal Growth* & Design, 7, 2192-2194 (2007).

Š. Selimovic, F. Gobeaux, S. Fraden Lab Chip, 10, 1696-1699 (2010)

fabrication: Guha, S., Perry, S.L., Pawate, A., Kenis, P.J.A., Fabrication of X-ray compatible microfluidic platforms for protein crystallization, Sensors and Actuators B, 2012, 174, 1-9

Cornell MacChess – F1

M. Heymann, A. Opthalage, J. L. Wierman, S. Akella, D. M. E. Szebenyi, S. M. Gruner, S. Fraden, IUCrJ (2014). 1, 349–360

Cornell MacChess – F1

230 frames from 71 Glucose Isomerase crystals = 93% complete set, 2 A resolution

M. Heymann, A. Opthalage, J. L. Wierman, S. Akella, D. M. E. Szebenyi, S. M. Gruner, S. Fraden, IUCrJ (2014). 1, 349–360

sample preparation

movies: S. Akella

Holtze, C., Rowat, A.C., Agresti, J.J., Hutchison, J.B., Angilè, F.E., Schmitz, C.H.J., Köster, S., Duan, H., Humphry, K.J., Scanga, R.A., Johnson, J.S., Pisignano, D., Weitz, D.A., Biocompatible surfactants for water-in-fluorocarbon emulsions, LabChip, 2008, 8:10, 1632-9

Decay Statistics

S. V. Akella, A. Mowitz, M. Heymann, S. Fraden Crystal Growth & Design 14, 4487-4509 (2014)

movie: F. Gobeaux

What is the right size of drop?

Dombrowski, R.D., Litster, J.D., Wagner, N.J., He, Y., Modeling the crystallization of proteins and small organic molecules in nanoliter drops, AiChE Journal, 2010, 56:1, 79-91

Glucose Isomerase

Concanavelin A

capilary valving to store drop: H. Boukellal, S. Selimovic, Y. Jia, G. Cristobal, S. Fraden, *Lab on a Chip* 9, 331–338 (2009)

movie: A. Opthalage

Petra III - P14

UBSET OF	INTENSITY D	DATA WITH	SIGNAL/NOI	SE >= -3.0 AS	FUNCTION	OF RESOLUT	TION						
ESOLUTION	NUMBER	R OF REFI	ECTIONS	COMPLETENESS	R-FACTOR	R-FACTOR	COMPARED	I/SIGMA	R-meas	CC(1/2)	Anomal	SigAno	Nano
LIMIT	OBSERVED	UNIQUE	POSSIBLE	OF DATA	observed	expected					Corr		
7.83	5629	611	615	99.3%	18.6%	16.1%	5605	13.25	19.9	\$ 94.6	• -3	0.847	373
5.53	11711	1067	1067	100.0%	17.8%	17.4%	11697	13.25	18.7	§ 93.9	• 5	0.865	785
4.52	15740	1324	1328	99.7%	17.6%	17.18	15733	14.19	18.4	§ 96.8	• -7	0.832	1050
3.91	18869	1560	1567	99.6%	18.1%	17.3%	18861	14.33	18.8	8 97.4	* 0	0.870	1271
3.50	21624	1769	1774	99.7%	17.9%	17.8%	21612	13.68	18.7	§ 97.3	• 1	0.869	1473
3.20	24359	1952	1953	99.9%	18.5%	18.9%	24347	12.66	19.4	8 96.2	• 1	0.850	1628
2.96	26268	2090	2093	99.9%	20.0%	20.8%	26258	11.31	20.8	§ 97.3	• -1	0.832	1759
2.77	27935	2242	2246	99.8%	21.6%	22.5%	27929	10.25	22.5	§ 96.9	• -1	0.844	1880
2.61	28796	2405	2405	100.0%	23.6%	24.48	28781	9.30	24.6	8 95.8	* -2	0.858	2012
2.48	31290	2533	2534	100.0%	26.3%	27.1%	31273	8.48	27.4	95.6	• 1	0.885	2143
2.36	32420	2626	2627	100.0%	27.4%	28.1%	32407	8.07	28.6	\$ 95.8	• -3	0.855	2252
2.26	34268	2776	2776	100.0%	30.2%	30.9%	34259	7.33	31.6	8 94.9	• 2	0.883	2435
2.17	35202	2878	2879	100.0%	32.7%	33.2%	35192	6.84	34.1	§ 92.5	· -2	0.856	2492
2.09	36851	2994	2999	99.8%	35.9%	37.2%	36840	6.08	37.4	8 93.3	* -1	0.849	2615
2.02	37467	3095	3098	99.9%	41.2%	42.8%	37454	5.19	43.1	8 91.4 ¹	• -3	0.849	2682
1.96	38131	3190	3195	99.8%	46.7%	48.6%	38111	4.51	48.8	89.7	* -2	0.826	2749
1.90	38357	3277	3283	99.8%	53.5%	56.3%	38330	3.89	55.9	8 86.6	* -2	0.828	2812
1.84	39650	3421	3422	100.0%	64.8%	69.7%	39632	3.07	67.8	84.1	· -2	0.767	2922
1.80	33575	3465	3476	99.7%	72.3%	79.18	33537	2.45	76.3	8 82.2	* -1	0.739	2760
1.75	19109	3114	3562	87.4%	72.3%	79.2%	18760	1.86	78.2	§ 69.1	• 4	0.765	1695
total	557251	48389	48899	99.0%	23.48	23.6%	556618	7.24	24.51	96.6*	-1	0.834	39788

~15 um foil windows ~50 um channel

100 µm

30 x 30 x 30um Xtals 20 x 20 um Beam

P14

30 ms exposures 100 frames per Xtal 0.1 degree oscillation

XDS 49 of 84 Xtals merged

Phenix molecular replacement

from flat

from frame

Use TEM grids for 2D/3D crystals?

LLNL style grid holder

(by W. Henry Benner)

 \Box

0-80 UNF FLAT HEAD SCREW

0-80 UNF Flat head screw

bR

plastic wafer,

carbon support

PA^{AMIL} plastic wafer, polyvinyl formal support

LCLS – CXI

CSPAD detector hdfsee in Crystfel

green ring = 7 Å

Efficiency comparisons for fixed-target support materials

Support material	Acquisition time (min / 1000 shots)	Window density (shots / cm ²)	Sample consumption (µL / 1000 shots)		
Si ₃ N ₄ wafer (100x100) ^{\$}	16 ± 1	310	7.7		
Metal grid (168) [#]	37 ± 4	538	11.9		
Plastic grid (64) [#]	65 ± 4	205	31.3		
Plastic grid (120) ^{\$}	40.4 ± 0.7	384	16.7		
Plastic grid (192) [†]	25	614	10.4		
Plastic wafer (100x400) [#]	38 ± 2	1567	1.5		
Plastic wafer (100x100) ^{\$}	15 ± 4	522	4.6		

[#]Data collected in May 2013; ^{\$}Data collected in July 2014

⁺Numbers extrapolated from assuming the same s/shot rates achieved for 120 shot plastic grids [^]Assume 2 μL per 3.05 mm diameter grid, 15 μL per 6.25 cm² wafer

Thank you!

Brandeis University

Seth Fraden <u>Achini Optalage</u> Sathish Akella Frederic Gobeaux Dongshin Kim

Daniel Pomeranz-Krummel Kelsy Anthony

MacChess, Cornell University

Sol Gruner Jenny Wierman Marian Szebenyi Irina Kriksunov David Schuller Chae Un Kim Mike Cook Scott Smith

Lawrence Livermore National Laboratory Matthias Frank Brent W. Segelke <u>Geoffrey K. Feld</u> Stefan Hau-Riege <u>W. Henry Benner</u> Tommaso Pardini Matthew A. Coleman Mark S. Hunter

Linac Coherent Light Source

Sébastien Boutet Marc Messerschmidt Garth J. Williams

Paul Sherrer Institute

Ching-Ju Tsai Xiaodan Li Bill Pedrini

Pacific Northwest National Laboratory James E. Evans

UC Berkeley Bryan A. Krantz

CFEL

Henry Chapman Cornelius Gati Miriam Barthelmess Dominik Obertühr Carolin Seuring

Lars Gumprecht Julia Maracke Tjark Delmas

EMBL – Hamburg Petralll – P14 Gleb Bourenkov Thomas Schneider