

Center for Cellular Imaging and Nano Analytics

Electron Crystallography of 2D crystals of membrane proteins:

Towards side-chain resolution from badly-ordered 2D crystals of potassium channels

Henning Stahlberg

Center for Cellular Imaging and NanoAnalytics (C-CINA)

BIOZENTRUM

Universität Basel The Center for Molecular Life Sciences Biozentrum, University of Basel, Switzerland

The Transmission Electron Microscope

Graphene

filmed in a Cs-corrected Titan with electrons at 80keV

Graphene: A single sheet of covalently bound Carbon atoms

... stronger than diamond. electrically highly conductive. .. almost invisible in the TEM. ... but (initially) hydrophobic.

Radosav Panteli

2 nm

Pantelic et al., J. Struct. Biol., 2011

viruses frozen in vitrified ice

Imaging biological specimens is more difficult...

50 nm

Rotavirus, mockup images adapted from Grigorieff, eLife, 2013;2:e00573.

New Camera Technology in TEM

< 2012 Imaged on a CCD camera or on film

Typical Parameters: Exposure Time: 1 second Dose: 10 electrons / Å² > 2013 Imaged on a direct electron detector

Typical Parameters: Exposure Time: 1 second Dose: 20 electrons / Å² Imaged on a direct electron detector with dose-fractionation and drift correction

Typical Parameters: Sub-Frames: 40 Frame Exposure Time: 0.5 seconds Total Exposure Time: 20 seconds Total Dose: 40 electrons / Å²

Sub-Frames are aligned and averaged by software.

Rotavirus, mockup images adapted from Grigorieff, *eLife*, 2013;2:e00573.

Calculated Fourier transform of an image

(contains Amplitudes and Phases)

Structures from Transmission Electron Microscopy Images in C-CINA Here at 3.5 Å resolution

Alpha-Helices

Beta-Sheet

(Image Processing: Ed Egelman)

Recent (2014) High-Resolution Structures from C-CINA

Purification

Yifan Cheng, UCSF: 3D reconstruction of TRPV1 determined by single-particle cryo-EM.

Maofu Liao et al., & Yifan Cheng, Nature 504, 107-112 (2013)

Parameters:

TEM: Polara, 300kV

Sample:

Purified Membrane Protein in Amphipols (instead of detergent)

Particles in final map: 10'357 (out of 170'000)

Image processing: RELION (Bayesian Maximum Likelihood)

Resolution: 3.4 Å (isotropic 3D)

Imaging

2D crystallization: removal of detergent by dialysis

Jap et al., Ultramicroscopy (1992)

Alternative methods to remove detergent:

Sample Prep

Imaging

Adding Cyclodextrin

Adsorbing to a lipid monolayer

Tricks from Tom Walz to 2D crystallize membrane proteins by dialysis (2010)

Primary Screens – Reconstitution of Protein

- protein concentration: 1 mg/ml
- standard buffer (10 mM MES, pH 6, 150 mM NaCl)
- Lipid to Protein Ratio (LPR): 0.5, 1, 2 w/w
- vary lipids: DMPC, DOPC, POPC, E. coli lipids

PE and PS lipids, other lipid mixtures

Secondary Screens – Produce 2D Crystals

- protein concentration: 1 mg/ml
- vary buffer (divalent cations, pH, salt)
- vary LPRs

Ternary Screens – Produce the "Golden Batch"

- increase protein concentration
- vary LPR around the identified LPR
- vary divalent cation concentration

Identify the lipid Identify the approximate LPR

Identify the buffer conditions Identify the LPR

Get the perfect 2D crystals

Sample Prep

Fee

ch,

Electron Microscopy Analysis of 2D Crystals of Membrane Proteins

Priyanka D. Abeyrathne¹, Marcel Arheit¹, Fabian Kebbel¹, Daniel Castano-Diez¹, Kenneth N. Goldie¹, Mohamed Chami¹, Ludovic Renault², Werner Kühlbrandt^{3,*}, and Henning Stahlberg^{1,*}

Comprehensive Biophysics 1.19 (2012)

Table 1. Structures of membrane proteins analyzed by electron crystallography, and the protein production, purification, and crystallization conditions. Future, updated versions of this table will be maintained at http://2dx.org. Crystallization Method: DI = Dialysis; BB = Biobeads; LM = Lipid Monolayer; SP = Salt Precipitation; FU = Fusion.

8	Francis	Residue Inte 20 541	Resolution 300 330	P28/	Origin	Expressed	Cone	Lips about	LPR (MR)	Detergent	T IN	10	Nation (arXi)	Non- icola agratis	Time	Crystalles fien Mothed	Crystal box	Reference
meth	Anoth - Amonium gas ion channel	12		1997 C.A.	E col	L col	4.4	DMPC	1	DM	28		230 NaCl, 0.6 NaN,	1.00	IM	DK.	where	(Contry et al., 2004)
	Annenin A3 - Ca2+ specific ion channel	6.5			Aut	£ 100	11	DOPC/DOPS	+11	mine	28	14	150 NeCL10x0, 1 NeN;	114	342	LM	sheets	(Oling et al., 2000)
	MicL - nucleasemptice	38			E col	E colt		E onlight	8.45	Triam \$-100			100 KCL	11.4	.99.	88	reside	(Baint et al., 1998)
	VDAC - voltage dependent anion channel	38			Penale		1.1		1.1.1.1.1							-	failure.	Unsuperbolin et al., 2003
nten Gran	KosA potassiam choosel	٠			X-brains	1.00	14	DMPC / Sodiam	4.1	DOM	RT	1.8	100 KCL 1 EDRA	114	34	DE		6.Fm al., 1998)
	Kirthach J potansium channel				M.	A red	1	DORC	0.6-1	DM	201107	٠	100 KC1, 3 NaN., 75 MgC12	1.4	tá.	89	where .	(Kan et al., 2001)
	MoKI - Cyclic Nucleotide Modulated K- Channel	16			M Ave	$L {\rm col}$	35	E coli lipid		DM	2019	67	20 KGL 1 (64G)	14	14	DE	sheets	(Chia et.al., 2007)
former.	CIC-sc1 - although proton antiporter from E cost	-6.5			8 i	£ coli		POPC	0,4	DM	4	1	25 Natl, 28 MgCl, 68 NaN,	inter a	dentil dentil	DE	sheen	(Modell et al., 2001
					E and	L colt	4.8	E col lipit	82-	DOM	37		25 K.AJ, 150 KCL 0.1 Galls, 5 NaN,	5-10 absorpt	4.64	DE	salves	(Williams et al., 1999)
	Mash - Nat - H- antiporter from Load	-			f. cel	E coli	8.5	E, coli lipid	82+	DOM	30	4	21 KAL, 110 KCI, 0.1 GBCL, 3 NeN,	5-10 absord	4-64	DE	ales	(Williams, 2000)
	and a second	Ŧ		1911	E coli	E coli	4.5	E coli ligid	82-	DOM	3/7	. 4	21 KAL 150 KCL 0.1 GeCl, 3 NeN.	5-10 absorbed	4-84	DE	hites	(Appel vial., 2008)
	NhaP1 - Na1 - 81- attipotar fran M. jatnatichi	- 8			M. januariki	£ 005	1	E coli lipid	0.6. 0.55	DDM	39	+	300 NuCl, 25 Access	10 absorbed	3-74	DI	silve	(Vineblement et al., 2005)
		÷	्रम्		M junnascht)									20				(Committed), 2011)
	TetA - secondary	47			E est		1	DAPOPORC	11	DDM (lipsds in		7,8	10 Tris, 159 NuCl, 41 MpC)			DE		(Yin et al., 2000)

2D crystallization of membrane proteins by dialysis

Factors influencing 2D crystallization

- Protein quality & concentration
- Type of lipids (acyl chain length, saturation, charges)
- Type of detergent
- Lipid-protein ratio (LPR)
- Way/speed of detergent removal
- Temperature (stability, diffusion, membrane fluidity)
- pH (charges, conformation, stability)
- Ionic strength (protein charges)
- Bivalent cations (interaction with proteins / lipids)
- Inhibitors / binding partner (conformational stability)

2D crystal formation

2D crystal

Grid conditioning and handover

Kemmerling *et al.*, J Struct Biol. 177(1):128–134 (2012)

Grid activation by a Helium plasma beam (without vacuum)

Writing on an EM grid with a microfluidic capillary

Team headed by Thomas Braun, C-CINA, Basel

Microfluidic Cryo-EM Grid Preparation

Team headed by Thomas Braun, C-CINA, Basel Grid cooled to 4°C at dew point

The 2dx software: user-friendly data processing in electron crystallography

CINA

0

Unbending Profile

to correct crystal distortions

These lines show 10x exagerated vectors that indicate how specific areas of the image have to be "warped" to produce a perfect crystal image.

Fourier Transformation of the <u>original</u> 2D crystal image

(ZOOM)

Fourier Transformation of the <u>unbent</u> 2D crystal image

(ZOOM)

MIoKI: 2D crystals

MIoKI: electron crystallography

Julia Kowal

Paul Baumgartner Mohamed Chami

Marcel Arheit Sebastian Scherer

2D projection maps

MIoK1 without ligand

Both Maps

3D volumes

Mechanism of HCN channels?

A K2 Summit camera arrived in Basel Nov. 2013

Automated data processing directly at the Titan

Automated movie alignment is using on Xueming Li's (Yifan Cheng lab, UCSF) alignment tool.

MIoKI cryo-EM maps

Movie-Mode image processing for 2D crystals

2D crystals locally move and distort under the electron beam!

Crystal distortion vectors for 38 frames from the same 2D crystal

The drift profile

Movie-Mode image processing for 2D crystals

Higher resolution, especially for tilted 2D crystals perpendicularly to the tilt axis.

Classical image processing

Movie-mode frame processing

MIoKI: cAMP-modulated K+ channel with putative voltage sensors

Top View

cAMP

Conclusions

- 2D crystals of membrane proteins that diffract electrons to 10Å can be grown within 6 to 12 months in most cases.
- Electron Diffraction only works on 2D crystals that are well-ordered and >1 μ m diameter.
- Massive advantage from direct electron detectors:
 - 3x better SNR, 3x smaller PSF
 - Drift correction (movie mode)
 - Dose fractionation in movies (dose-dependent resolution filter)
 - 3x improved final resolution (e.g.: 9Å => 3Å)
- 3.0Å resolution is (almost) possible by cryo-EM imaging with direct electron detection of 2D crystals >100nm diameter that diffract to at least 1nm resolution.
- 2.0 Å resolution from cryo-EM of membrane proteins should be possible after:
 - correction for the curvature of the Ewald Sphere
 - correction for the limited flatness of the 2D crystals
 - correction for the effect of beam tilt.
 - more precise determination of the defocus.
- What SNR(q) can an instrument give us before target destruction?
 - TEM @ 300kV: 30 e/Å² total dose to measure up to 3Å.
 - TEM @ 300kV: 120 e/Å², when using dose-dependent resolution filter (<30 e/Å²: 3Å, <50 e/Å²: 7Å, <120 e/Å²: 15Å).

<u>Acknowledgements</u>

C-CINA.org

<u>MloK1:</u> Po-Lin Chiu (Harvard) **Gunnar Schröder (Jülich, DE)**

Martina Rangl Simon Scheuring (Marseille, FR)

Crina Nimigean (Cornell Univ., NY, USA)

<u>PYD</u> Sebastian Hiller (Biozentrum) Petr Broz (Biozentrum)

<u>T6SS</u>

Mikhail Kudryashev (Biozentrum) Marek Basler (Biozentrum) Ed Egelman (Virginia) David Baker (Seattle) Members:

Stefan Albiez Stefan Arnold Paul Baumgartner Karen Bergmann Andrej Bieri Nikhil Biyani Jan Burri **Thomas Braun Mohamed Chami** Venkata Dandey Ariane Fecteau-LeFebvre **Dominic Giss** Kenny Goldie lexandra Graff Mark Hilge Simon Kemmerling **Roger Krenger** Julia Kowa Raphael Kü **Misha Kudryashev Cedric Leu Shirley Müller Philippe Ringler** Sebastian Scherer Jarek Sedzicki Kushal Sejwal Shahmorad Martin Oegge

Funding: SNI, NCCR TransCure, SNF, Hoffmann La-Roche, SystemsX.ch

Basel, Switzerland