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The time scale in biology

molecular motor generation time
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The space scale in biology

Visible using an electron microscope
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Ion channels control heart and brain electrical activity
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To understand how the membrane protein works across
the space and time
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Post-transiational Modifications Membrane Lipads
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How to prepare membrane protein samples for structure determination

Protein engineering and constructs design for targets based on bioinformatics and molecular biology

Expression screen in HEK cells by FSEC (Fluorescence-detection Size-Exclusion Chromatography)
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Large scale expression in insect cells and purification (detergents and lipids)=0.5mg/L
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MS/N-terminal sequencing

NMR | «—— || Monodispersity screen (HPLC/EM negative staining) SAXS

AFM |<——| Reconstitution ‘ Limited proteolysis
Functional assay 2D crystallization 3D crystallization Re-design the constructs

Mutagenesis || Negative stain and Cryo-EM Vapour diffusion, lipidic cubic phase, Bicelle crystallization
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Collection of titled 2D images Crystal screening at SLS using microdiffractometer (MD2)

Structure determination | — | Molecular simulation
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Sufficinet amount of membrane proteins are expressed and purified for characterization
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Structures of more than 95% membrane proteins are
determined using X-ray
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The X-ray structure of mouse serotonin receptor
Hassaine G et al Nature (2014) 512:276-281
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Composition and curvature of lipid bilayer modulate the topology, structure, dynamic
and functionof membrane protein
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Membrane Protein crystallisation (reconstitution)
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EM structure of NaV
Tsai et al (2013)IMB425(22):4074-88
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Patch clamping to measure the Na*" conductance of the
voltage-gated sodium channel
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XFEL opens a great opportunity to study dynamic of 2D membrane protein
crystals-bR 2D crystals diffract to 4.5A
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Questions or remarks

High quality 2D membrane proteins are rare (1-5%), can be improved to maximal 10-20%,
make new lipids with different properties?

It 1s easier to obtain 2D nanocrystals 100-300nm, SwissFEL nanofocus 100-200 useful at
ES-C station and do we get enough photons for high resolution?

What is the resolution limit of 2D nanocrystals at XFEL?
How to ensure the flatness of the 2D crystals?

Before diffraction, to measure the activity (ion flow, pH change or ligand-binding) of the
2D crystals are highly desirable, possibilities at ES-C?

For radiation damage studies of 2D membrane protein crystals on fixed target, what will
be the key xperiments?

The make-the-difference experiments of 2D crystals at XFEL?



