Atomic Force Microscopy for the Study of Membrane Proteins

Paul Scherrer Institute 27th January 2015

Dimitrios Fotiadis Institute of Biochemistry and Molecular Medicine University of Bern dimitrios.fotiadis@ibmm.unibe.ch

FEI Tecnai F20 (University of Bern, Institute of Anatomy)

Atomic Force Microscope

Atomic Force Microscope

Principle of AFM

Principle of AFM

Courtesy H.-R. Hidber, Physics Institute, University of Basel

The two most commonly used AFM modes

Contact mode

- + high-resolution imaging
- + relatively fast
- friction / lateral forces

Influence of the tip geometry

AFM in Biology

- Relatively new imaging technique in biology
- Can look at surfaces and interactions of molecules
- Samples can be imaged under near-physiological conditions, e.g. RT or 37°C, normal pressure and aqueous solution

 \rightarrow <u>conformational changes</u> using the same sample

→ determination of <u>dynamic events</u>

- Lateral resolution < 5 Å, vertical resolution ~ 1 Å
- Manipulation / dissection of the biological sample possible (nanoscalpel)

Bacteriorhodopsin

CS

ES

AFM topographs: Outstanding signal-to-noise ratio and sub-nanometer resolution

Native 2D crystals of bacteriorhodopsin from the archaebacterium, Halobacterium halobium.

4.1 Å

Loop A: ~6 aa

~200 pN

→ AB loop / CD loop / C-terminus / rest of compressed EF loop

Horizontal section of the vertebrate eye

Lens fiber cells: Architecture in the eye

Shiels et al. (2000), FASEB, 14, 2207-2212.

Lens fiber cells: Architecture in the eye

AFM of double-layered 2D crystals of AQP0

The cytoplasmic surface of AQP0

The extracellular surface of AQP0

Structure and interaction mechanisms of stacked 2D AQP0 crystals

Horizontal section of the vertebrate eye

Force dissection of a gap junction plaque

Isolated Cx26 gap junction plaque from HeLa cells (cervical cancer cells) as imaged by AFM

Conformational changes in surface structures of isolated connexin 26 gap junctions

- Ca ²⁺

+ 0.5 mM Ca ²⁺

Comparison of features +/- Ca²⁺ reveals a large change in the extracellular pore of hemichannels.

	- Ca ²⁺ size ± SD [nm]	+ Ca ²⁺ size ± SD [nm]
Outer diameter of extracellular pore	4.9 ± 0.3	4.8 ± 0.3
Inner diameter of extracellular pore	1.3 ± 0.3	0.5 ± 0.3
Gap junction height	17.4 ± 0.7	18 ± 0.9

Problem:

Acquisition of one topograph with a commercial AFM takes >1.5 min.

 \rightarrow Biological processes occur on a much faster time scale.

Solution:

Development of high-speed AFM

Toshio Ando's group at Kanazawa University, Japan

State of the art high-speed AFM

I= 7 μm, w= 2 μm, d= 90 nm k= 0.2 N/m Resonance frequency= 1.2 MHz (in water)

After plasma etching: tip radius ~5 nm

Ando et al. (2001), PNAS

Reversible light-induced dynamic structural changes of the bacteriorhodopsin mutant D96N*

Native 2D crystals of bacteriorhodopsin from the archaebacterium, *Halobacterium halobium*.

* Bacteriorhodopsin mutant D96N has a photocycle of ~10 s.
wt-bacteriorhodopsin photocycle: ~10 ms (one H⁺ is pumped out of the cell)

Thank you for your attention !

Paul Scherrer Institute 27th January 2015

Dimitrios Fotiadis Institute of Biochemistry and Molecular Medicine University of Bern dimitrios.fotiadis@ibmm.unibe.ch