

Cyclotrons for Ions

W.Joho 19.3.2013

The mass unit of a nucleon is defined with: $m_0 = m(C_{12}^{6+})/12$

mass m and charge q with dimensionless quantities:

$$m \equiv A m_0$$
, $q \equiv Z e$ (for protons: A=1.007)

Rest energy E_0 of a nucleon : $E_0 = m_0 c^2 = 931.5$ MeV (938.27 MeV for protons)

kinetic energy of an ion: (E/A)= energy/nucleon

For numerical calculations in cyclotrons only **2 basic numbers** are needed:

$$c \equiv 299.792458 \text{ m/}\mu\text{s}$$

 $U_0 \equiv (E_0/e) = 931.5 \text{ MV}$ (=> the unit charge e is not needed!)

It is helpful to use the following <u>derived</u> constants:

(1)
$$(\frac{c}{2\pi}) = 47.71 \,\text{MHz} \cdot \text{m}$$

(2)
$$\left(\frac{e}{2\pi m_0}\right) = \frac{c^2}{2\pi U_0} = 15.356 \text{ MHz/T} \text{ (reference for cyclotron frequency)}$$

(3)
$$(B\rho)_0 = (\frac{m_0 c}{e}) = \frac{U_0}{c} = 3.107 \text{ Tm (reference for magnetic rigidity } B\rho)$$

(4)
$$\xi = \frac{e^2}{2m_0} = e^2 \frac{c^2}{2U_0} = \frac{E_o}{2(B\rho)_0^2} = 48.24 \frac{MeV}{(Tm)^2}$$
 (reference for kinetic energy)

note:
$$(1)/(2)=(3)$$
 $(47.71/15.356=3.107)$
 $(2)\times\pi=(4)$ $(15.356\times\pi=48.24)$

For protons the corresponding constants are:

$$15.245 \,\mathrm{MHz/T}$$
, $3.130 \,\mathrm{Tm}$, $47.89 \,\mathrm{MeV/(Tm)^2}$

use dimensionless units for

velocity v, total Energy $E_{tot} = \gamma E_0$ and momentum p:

(5)
$$\beta \equiv \frac{v}{c}$$
 (can be parametrized as $\beta = \sin \varphi$)

(6)
$$\gamma \equiv \frac{1}{\sqrt{1-\beta^2}} \qquad (\gamma = \frac{1}{\cos \varphi})$$

(7)
$$\widetilde{p} \equiv \beta \gamma = \frac{p}{mc}$$
, $(\widetilde{p}^2 = \gamma^2 - 1)$ $(\widetilde{p} = \tan \varphi)$

The two basic equations for Cyclotrons are:

(8)
$$p = q(B\rho)$$
, $(B\rho) = magnetic rigidity$

(9)
$$\omega_0 = (\frac{q}{m\gamma}) \langle B \rangle$$
, Larmorfrequency

FED

For each energy exists an equilibrium orbit with circumference $L \equiv 2\pi R$ and revolution frequency ω_0 . This defines the average radius R, the average magnetic field $\langle B \rangle \equiv B_0(R)$ and the magnetic rigidity $\langle B \rho \rangle$:

(10)
$$B_0(R) \equiv \frac{1}{2\pi R} \int B_z(s) ds$$

$$(11) p = q(B\rho)$$

$$(12) \quad (B\rho) = B_0(R) \cdot R$$

since
$$\omega_0 = v/R$$
, $(v \equiv \beta c)$

=> scaling laws for cyclotrons:

13)
$$R = \beta R_{\infty}, R_{\infty} \equiv \frac{c}{\omega_0}$$

14)
$$B_0(R) = B_{center} \gamma(R)$$

using reference value $(B\rho)_0$ gives the formula connecting $(B\rho)$ and (E/A):

(15)
$$\widetilde{p} = \left(\frac{Z}{A}\right) \frac{(B\rho)}{(B\rho)_0}$$

$$(16) \gamma = \sqrt{1 + \widetilde{p}^2}$$

(17)
$$(E/A) = (\gamma - 1) E_0$$

The K_B - value of a cyclotron is given by the maximum bending power $(B\rho)$ of an ion before extraction :

$$(18) (B\rho)_{\text{max}} = B_0(R_{\text{max}}) \cdot R_{\text{max}}$$

(19)
$$K_B = \xi(B\rho)_{\text{max}}^2, \quad \xi = 48.24 \frac{MeV}{(Tm)^2}$$

for nonrelativistic energies:

$$(20) E = \frac{p^2}{2m}$$

(20)
$$E = \frac{p^2}{2m}$$
(21)
$$(E/A)_{nonrel} = \frac{1}{2} (\frac{q}{m})^2 (B\rho)^2$$

and for the maximum energy:

(22)
$$(E/A)_{\text{max}} = \varepsilon \equiv (\frac{Z}{A})^2 K_B$$

the relativistically correct maximum energy is:

(23)
$$(E/A) = (\gamma - 1) E_0, \qquad \gamma = \sqrt{1 + \frac{2\varepsilon}{E_0}}$$

series expansion for low energies:

(24)
$$(E/A) = \varepsilon \left[1 - \frac{1}{2} \left(\frac{\varepsilon}{E_0} \right) + \frac{1}{2} \left(\frac{\varepsilon}{E_0} \right)^2 - \dots \right]$$

inverse formula for a given energy E/A:

(25)
$$\gamma = 1 + \frac{(E/A)}{E_0}, \qquad \tilde{p} = \sqrt{\gamma^2 - 1}, \qquad \beta = \frac{\tilde{p}}{\gamma}$$

(26)
$$\varepsilon = \frac{E_0}{2} \, \tilde{p}^2 = (E/A) \left[1 + \frac{(E/A)}{2E_0} \right]$$

(27)
$$K_B = \varepsilon (\frac{A}{Z})^2$$

(28)
$$(B\rho) = \frac{A}{Z} \tilde{p}(B\rho)_0 = \sqrt{\frac{K_B}{\xi}} = \sqrt{\frac{K_B}{48.24 MeV}} [Tm]$$

Focusing Limit K_F:

For light ions with a high (Z/A) ratio, the vertical focusing becomes critical and requires large spiral angles for the magnet sectors.

There exists an energy limit, which depends $\underline{\text{linearly}}$ on (Z/A) and can be lower than the bending limit.

Formula (22) for the non relativistic energy limit ε is then replaced by:

(29)
$$(E/A)_{max} = \mathcal{E}_F \equiv (\frac{Z}{A}) K_F$$

and the <u>relativistically</u> correct maximum energy is given as in (23)

(30)
$$(E/A) = (\gamma - 1) E_0, \qquad \gamma = \sqrt{1 + \frac{2\mathcal{E}_F}{E_0}}$$

cyclotron frequency ω_0 :

(31)
$$\omega_0 = 2\pi v_0 = \frac{q}{m} \frac{B_0(R)}{\gamma(R)}$$

(32)
$$v_0 = \frac{Z}{A} \left(\frac{e}{2\pi m_0}\right) \frac{B_0(R)}{\gamma(R)} = \frac{Z}{A} \frac{B_0(R)}{\gamma(R)} 15.356 MHz/T$$

the RF-frequency can be a <u>harmonic</u> h of the revolution frequency v_0 :

$$(33) v_{RF} \equiv h v_0$$

the reference value R_{∞} for the scaling of the radius is then :

(34)
$$R_{\infty} = \frac{c}{\omega_0} = \frac{(c/2\pi) \cdot h}{v_{RF}} = h \frac{47.71 \text{MHz} \cdot \text{m}}{v_{RF}}$$
$$R = \beta R_{\infty}$$

to have low losses at extraction it is important to have a large turn separation dR/dn

(35)
$$\frac{dR}{dn} = \frac{\gamma}{\gamma + 1} R \frac{E_G}{(E/A)} \frac{f^2}{v_r^2} , \qquad E_G = \frac{Z}{A} e\hat{V}$$

$$\hat{V} = \text{peak voltage/turn}, \quad v_r = \text{radial tune}, \quad f = \frac{v_r(isochr.)}{\gamma} \quad (\approx 1.2 \text{ in ring cyclotrons})$$

This shows the advantageof Ring Cyclotrons with a largeradius R:

- space for many high voltage cavities \Rightarrow large \hat{V}
- the turn separation scales with R

there are two further effects, which can enhance dR/dn:

- 1. v_r drops in the radial fringe field region
 - => this drop is fast in a warm magnet with a narrow gap (tolerable phase slip)
- 2. If v_r is around 1.4-1.6 at extraction, one can double dR/dn between the last 2 turns with excentric injection and preserving the induced amplitude with single turn extraction

Example:

RIKEN Superconducting Ring CyclotronSRC:

Uranium : A = 238, Z = 86, E/A = 345 MeV/N

(25)
$$\gamma = 1 + \frac{(E/A)}{E_0} = 1.37$$
, $\tilde{p} = 0.94$, $\beta = 0.68$

(26)
$$\varepsilon = \frac{E_0}{2} \tilde{p}^2 = (E/A) \left[1 + \frac{(E/A)}{2E_0} \right] = 1.185 (E/A) = 409 MeV/N$$

(27)
$$K_B = \varepsilon (\frac{A}{Z})^2 = 409(\frac{238}{86})^2 = 3'130MeV$$

(28)
$$(B\rho) = \sqrt{\frac{K_B}{48MeV}} = \sqrt{\frac{3130}{48}} = 8.06 \, Tm$$

Magnet weight W of a cyclotron: => Plot by W.Joho ("Modern Trends in Cyclotrons", CERN Accelerator School, Aarhus Denmark 1986):

(36)
$$W = W_1 (K_B / 1000 MeV)^{3/2} = W_2 (B\rho)^3$$

warm magnets: $W_1 \approx 5'000 \text{ t}$, $W_2 \approx 50 \text{ t}$

But PSI Ring Cyclotron with 590 MeV protons, $K_B = 775$ MeV, $B\rho = 4Tm$,

 $B_{max} = 2.1T$ weighs only 2'000 t; => $W_2 = 31 \text{ t}$.

sc-magnets: only a few operating cyclotrons in 1986. These magnets were about

a factor 12 lighter than warm magnets => W_1 =380 t , W_2 =4 t

Today more emphasis on low stray fields => more iron in the yoke.

Examples:

- 1) COMET Cyclotron PSI, 250 MeV protons, $B\rho=2.4Tm$, $K_B=283$ MeV, $B_{max}=5T$ W=90 t, $=> W_2=6$ t
- 2) SRC RIKEN, 345 MeV/N , Bp=8.06 Tm , B_{max} =4T , W=8'300 t , => W_2 = 16 t Thus here the weight advantage over the warm PSI Ringcyclotron is only a factor of 2.