Beam Ellipses

Werner Joho

Paul Scherrer Institute (PSI)

CH5232 Villigen, Switzerland

24.11.2013

Introduction

In 1980 I wrote an internal SIN report on Beam Ellipses wit the titel «Representation of Beam Ellipses for TRANSPORT calculations» SIN-Report TM-11-14, 8.5.1980

At that time our research institute was called SIN (for Swiss Institute for Nuclear Research), which in 1988 was integrated into the new PSI (for Paul Scherrer Institute).

Later a wrote an article called «Fun with Formulas».
I presented it (but did not published it) at a seminar talk given at the CERN Accelerator School on

Synchrotron Radiation and Free Electron Lasers,
Brunnen, Switzerland, 2-9 July 2003
In this article some foils are devoted to beam ellipses.
I think it is thus helpful, if I add these foils here as an addendum to my previous report on beam ellipses.
this file is available on the WEB with
www.google.ch: „Joho PSI Beam Ellipses" or directly with http://gfa.web.psi.ch/publications/presentations/WernerJoho/

Courant-Snyder representation of the rms beam ellipse in phase space (x, x^{\prime})

$$
\varepsilon=\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}
$$

$$
\varepsilon^{2}=\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2},(\varepsilon=\text { emittance })
$$

$$
\left.\sigma^{2} \equiv<x^{2}>, \sigma^{\prime 2} \equiv<x^{\prime 2}\right\rangle
$$

$$
\beta=\sigma^{2} / \varepsilon, \gamma=\sigma^{\prime 2} / \varepsilon, \alpha=-<x x^{\prime}>/ \varepsilon, \quad 1+\alpha^{2}=\beta \gamma
$$

not easy to plot and akward to remember !

parametric representation of the rms beam ellipse in phase space (x, x^{\prime})

$$
\begin{aligned}
& x=\sigma \cos \varphi \\
& x^{\prime}=\sigma^{\prime} \sin (\varphi+\chi)
\end{aligned}
$$

$$
(0 \leq \varphi \leq 2 \pi=\text { "running parameter' }
$$

but what is phase shift χ ?

$$
\sin \chi \equiv r_{12} \equiv \frac{\left\langle x x^{\prime}\right\rangle}{\sigma \sigma^{\prime}}=\text { correlation parameter }
$$

this representation of the rms-ellipse is easy to remember and easy to plot! ($\chi=0$ gives a circle) connection with Courant-Snyder: $\boldsymbol{\alpha}=\ldots \chi$

Beamsize in Drift

In waist at $\mathrm{s}=0$:
$\sigma_{0}=1 \mathrm{~mm}, \quad \sigma^{\prime}=1 \mathrm{mrad}, \beta_{0}=\frac{\sigma_{0}}{\sigma^{\prime}}=1 \mathrm{~m}$
emittance $\varepsilon=\sigma_{0} \sigma^{\prime}=1 \mathrm{mmmrad}$
After drift s: $\tan \chi=\frac{\mathrm{s}}{\beta_{0}}(=-\alpha)$
$\sigma(s)=\frac{\sigma_{0}}{\cos \chi}$
$\beta(s)=\sqrt{\varepsilon \sigma}$ or $\beta(s)=\beta_{0}+\frac{s^{2}}{\beta_{0}}$

Dictionary for Beam Parameters

ome useful quantities are easy to guess from the factors
$\sin \chi$ or $\cos \chi(\chi$ is 0 at a waist!) and dimensional arguments (using m, mm and mrad)
emittance:
slope of envellope: $\quad d \sigma / d s=\sigma^{\prime} \sin \chi \quad[\mathrm{mrad}]$
virtual waist size:

$$
\mathrm{x}_{\mathrm{w}}=\sigma \cos \chi \quad[\mathrm{mm}]
$$

β-function at virtual waist: $\quad \beta_{\min }=\left(\sigma / \sigma^{\prime}\right) \cos \chi \quad[\mathrm{m}]$
distance from virtual waist: $\quad L_{w}=\left(\sigma / \sigma^{\prime}\right) \sin \chi \quad[m]$
$=\beta_{\text {min }} \tan \chi$
phase advance from virtual waist: $\psi=\chi$
the dictionary between the 2 representations is:

$$
\begin{array}{ll}
\alpha=-\tan \chi=-\frac{\left\langle x x^{\prime}\right\rangle}{\varepsilon} & \left(=-x_{3} / x_{1}=-x_{2}{ }^{\prime} / x_{4}{ }^{\prime}\right) \tag{1}\\
\beta=\frac{\sigma^{2}}{\varepsilon}=\frac{\sigma}{\sigma^{\prime} \cos \chi} & \left(=x_{2} / x_{4}^{\prime}\right) \quad[\mathrm{m}] \\
\gamma=\frac{\sigma^{\prime 2}}{\varepsilon}=\frac{\sigma^{\prime}}{\sigma \cos \chi} & \left(=x_{3}{ }^{\prime} / x_{1}\right) \quad\left[m^{-1}\right]
\end{array}
$$

(as a check : $\beta \gamma=1 / \cos ^{2} \chi=1+\tan ^{2} \chi=1+\alpha^{2}$)

Convolution of two ellipses

Example: convolution of the electron beam ellipse ($\mathrm{x}_{1}, \mathrm{x}_{1}{ }^{\prime}$), with parameter $\sigma_{1}, \sigma_{1}, \chi_{1}$ and the diffraction limited photon beam ($\mathrm{x}_{2}, \mathrm{x}_{2}{ }^{\prime}$), with parameter $\sigma_{2}, \sigma_{2}^{\prime}, \chi_{2}$ from an undulator.

Simple recipe:
add variances and correlations linearly
to form the combined ellipse ($\mathrm{X}, \mathrm{X}^{\prime}$) with parameter $\Sigma, \Sigma^{\prime}, \chi$

$$
\begin{aligned}
& \begin{array}{l}
\left\langle X^{2}\right\rangle=\left\langle X_{1}^{2}\right\rangle+\left\langle\mathrm{X}_{2}^{2}\right\rangle \\
\left\langle X^{\prime 2}\right\rangle=\left\langle x_{1}^{\prime 2}\right\rangle+\left\langle\mathrm{X}_{2}^{\prime 2}\right\rangle \\
\left\langle X X^{\prime}\right\rangle=\left\langle\mathrm{X}_{1} X_{1}^{\prime}\right\rangle+\left\langle\mathrm{X}_{2} \mathrm{X}_{2}^{\prime}\right\rangle
\end{array} \\
& \Sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2} \\
& \Sigma^{\prime 2}=\sigma_{1}^{\prime 2}+\sigma_{2}^{\prime 2} \\
& \Sigma \Sigma^{\prime} \sin \chi=\sigma_{1} \sigma_{1}^{\prime} \sin \chi_{1}+\sigma_{2} \sigma_{2}^{\prime} \sin \chi_{2}
\end{aligned}
$$

the convoluted emittance is

$$
\varepsilon=\Sigma \Sigma^{\prime} \cos \chi \quad\left(\varepsilon \geq \varepsilon_{1}+\varepsilon_{2}\right)
$$

with the dictionary one can, if necessary, transform these values back to the Courand-Snyder values α, β, γ.

Two Ellipses convoluted

Ellipses :
$x=x_{m} \cos \varphi, \quad y=y_{m} \sin (\varphi+\chi), \quad(0 \leq \varphi \leq 2 \pi)$
area $=\pi \varepsilon, \quad \varepsilon=x_{m} y_{m} \cos \chi$
convolutedellipse :
$x_{m}^{2}=x_{m 1}^{2}+x_{m 2}^{2}$
$y_{m}^{2}=y_{m 1}^{2}+y_{m 2}^{2}$
$x_{m} y_{m} \sin \chi=x_{m 1} y_{m 1} \sin \chi_{1}+x_{m 2} y_{m 2} \sin \chi_{2}$

	$\mathbf{X m}$	$\mathbf{Y m}$	$\boldsymbol{\chi}$	$\boldsymbol{\varepsilon}$
Ellipse 1	2.0	1.5	30^{0}	2.60
Ellipse 2	1.3	2.3	60^{0}	1.49
El-conv	2.39	2.75	38.6^{0}	5.12

representations of beam profiles with binomials

1) Gaussian: $y=e^{-1 / 2(x / \sigma)^{2}}$
2) Binomials :

$$
y=\left[\left(1-\left(\frac{x}{x_{L}}\right)^{2}\right]^{m-1 / 2}, \quad x \leq x_{L}, \quad x_{L}=\sqrt{2(m+1)} \sigma\right.
$$

clipped tails at x_{L} (e.g. $m=3.5 \Rightarrow x_{L}=3 \sigma ; m=7 \Rightarrow x_{L}=4 \sigma$)

Profiles

Tails of Profiles

(full width at 10% level :
$\approx 4.4 \sigma$ for large range of m)

clipped binomial phase space densities

$$
\rho\left(x, x^{\prime}\right)=\left(1-a^{2}\right)^{m-1}
$$

$\left(a^{2} \equiv u^{2}+v^{2} \leq 1, \quad u \equiv \frac{x}{x_{L}}, \quad v \equiv \frac{x}{x_{L}^{\prime}}\right)$
projected profile : $y(x)=\left(1-u^{2}\right)^{m-1 / 2}$
we get again a binomial with theexponent reduced by $1 / 2$

big trick:

plot fraction which is outside of ellipse! (and in logarithmic scale)
for $m \geq 1.5$ the curves have a crossing point at $\varepsilon_{p} \approx \varepsilon$ and p $\approx 13 \%$; i.e. ca. 87% of all particles are inside an ellipse with emittance $\varepsilon=(2 \sigma) \cdot\left(2 \sigma^{`}\right)$, independent of m.

For a Gaussian distribution we have $\mathrm{p}=\exp \left(-2 \varepsilon_{\mathrm{p}} / \varepsilon\right)$, which gives a straight line in this diagram $(m=\infty)$.

