

Wir schaffen Wissen – heute für morgen

Achievements in 2D protein crystallography at the LCLS

Bill Pedrini
Paul Scherrer Institut

PSI-IOP 05.052015

Outline

- 1. 2D crystals
- 2. 2D crystallography
- 3. Fixed target experiments at FELs
- 4. "Recent" results from LCLS experiments
- 5. Summary of the **facts**
- 6. Complementarity with cryo EM

2D crystals

Motivation for 2D crystals (I)

"(close to) native environment" for membrane proteins

PAUL SCHERRER INSTITUT

Motivation for 2D crystals (II)

2D crystal

3D crystal

Single particle

2D crystallography

PAUL SCHERRER INSTITUT

2D crystallography summarized

Fixed target experiment at FELs

PAUL SCHERRER INSTITUT

Sample

PAUL SCHERRER INSTITUT

«Diffract before destroy»

2D crystal

Single particle

Data acquisition

"Recent" results from LCLS experiments

Acknowledgements:

2D crystal collaboration

- Lawrence Livermore National Laboratory: Matthias Frank, Mark Hunter, Matthew Coleman, Henry Benner, Stefan Hau-Riege, Tommaso Pardini, Brent Segelke, Geoffrey Feld
- Pacific Northwest National Laboratory: James Evans
- Arizona State Univeristy: Nadia Zatsepin, John Spence, Christopher Kupitz
- Boston University: John Ogren, Kenneth Rotschild
- CFEL: Anton Barty, Richard Kirian
- SLAC (LCLS-CXI): Sebastien Boutet, Garth Williams, Marc Messerschmitt
- Paul Scherrer Institute: Ching-Ju Tsai, Celestino Padeste, Guido Capitani, Xiao-Dan Li, Gebhard Schertler

LCLS experiment

Sample holder

bR D96N

Run r0127:

bR mass: Sugar: Support: «few» μg 0.5% glucose

20 nm Si₃N₄-membrane, 100 x 100 μ m windows

Wavelength: 1.467 Å Detector dist.: 0.235 m Tilt angle: 0°

Illumination: off Pump laser: off

«Single crystals»

«Few crystals»

465 / 968 (48.0%) (including single crystals)

«Too many crystals»

Indexing

Indexing

Peak position prediction

PAUL SCHERRER INSTITUT

Summary of the facts

- «Best» membrane protein 2D crystal
- 2D crystals stay flat
- 2D crystals survive in vacuum and at «room» temperature
- 2D crystals diffracted before getting destroyed
- Data acquisition is possible at > 1Hz
- «2-3 mJ»: 10 photons per peak at 7 Å, 1 photon per peak at 4 Å

• Tilted data analysis not yet implemented

- Optimize everything: background, detector, analysis tools, ...
- 10 times more photons on the sample
- Longrange crystal order at ~200 nm

Complementarity with cryo EM

PAUL SCHERRER INSTITUT

Complementarity

	PHASES Electron microscopy (diffraction)	NO PHASES X-ray diffraction
Traditional (radiation damage limited)	 Few tens of structures < 5 – 10 Å Soon 3 Å Cryo conditions 	Only powder
Ultrafast (diffract and destroy)	?	 < 4 Å ??? "Room" temperature / Pump-probe

THANK YOU