

Jan P. Embs

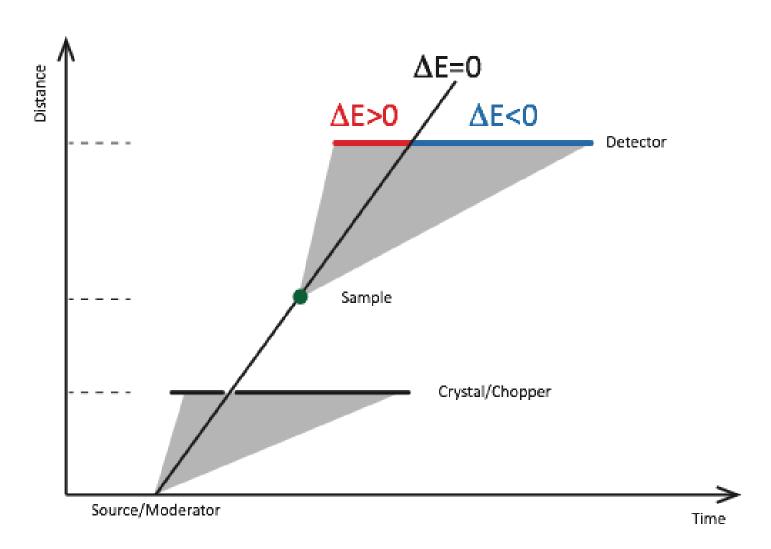
Laboratory for Neutron Scattering & Imaging

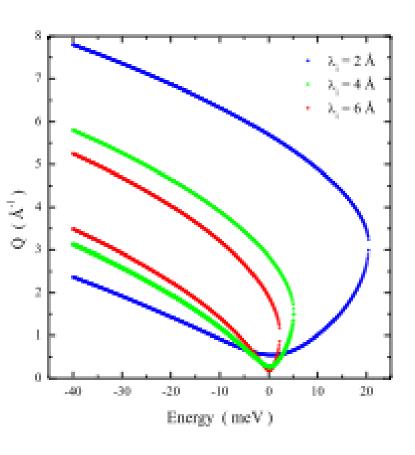
Cation Dynamics in Ionic Liquids (ILs) as Seen by QuasiElastic Neutron Scattering (QENS)

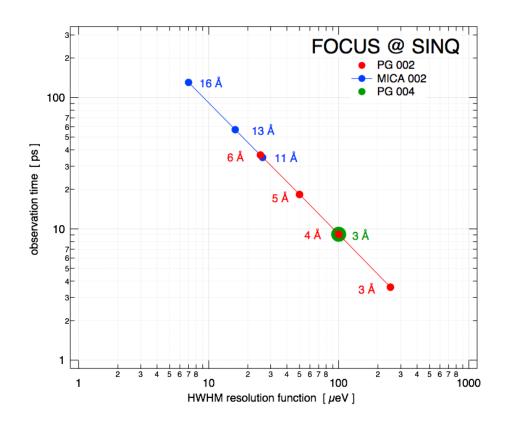
5th Swiss-Sino Workshop, 4th-5th May 2015

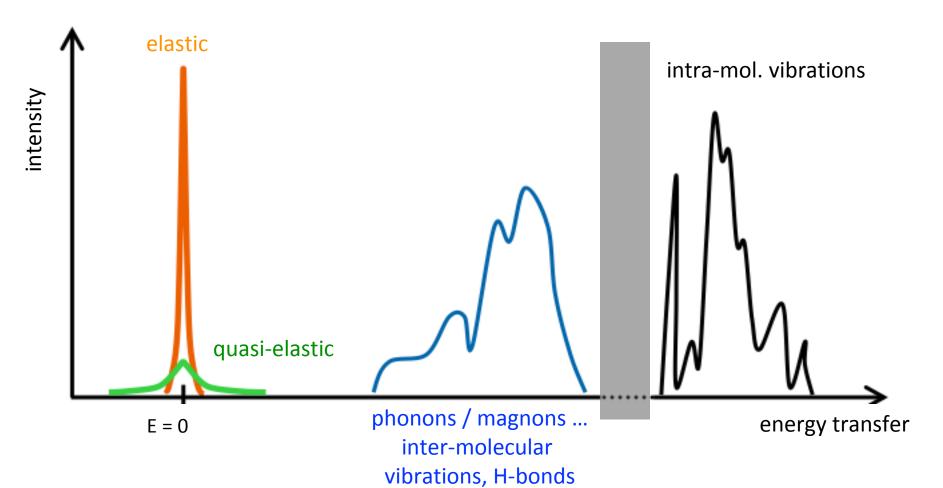
- FOCUS
- QENS
- ILs
- QENS results
- INS on ILs
- Outlook

- 2 Å ≤ λ ≤ 6 Å (PG)
- 6 Å ≤ λ ≤ 16 Å (MICA)
- energy range: 20 0.3 meV
- 20 mK ≤ T ≤ 1400 K
- p ≤ 1.2 GPa
- H ≤ 9T

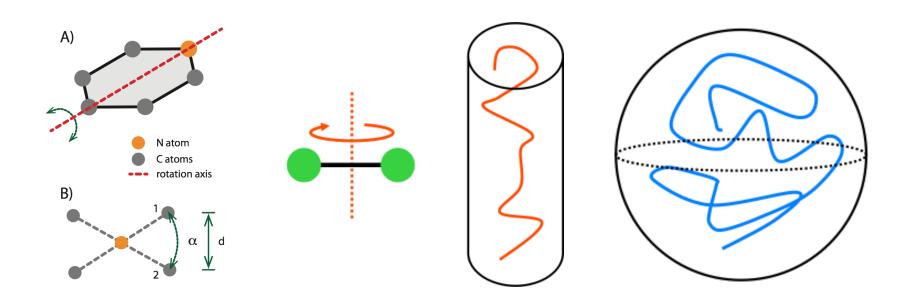





$$I(\text{tof}, 2\theta) \Rightarrow I(Q, \omega) \propto S(Q, \omega)$$



$$\Delta t_{
m obs} = rac{2\hbar\sqrt{\ln 2}}{\Delta E}$$


- far-IR / Raman
- dielectric relax spectroscopy
- NO selection rules for neutrons

quasielastic neutron scattering = QENS

- stochastic atomic motions on ps time scale
- reveals spatial details of the dynamic process (jump distances, rot. angles etc.)
- discerns between localised (e.g., rotational) & translational types of motions
- well suited for samples containing protons
- masking via deuteration

Separation

- gas separation
- extraction
- membranes

Electrolytes

- fuel cells
- sensors
- batteries
- supercaps
- metal finishing
- coating

Heat Storage

thermal fluids

Lubricants & Additives

- **lubricants**
- fuel additives

10^{18}

- artificial muscles
- robotics

Ionic Liquids

- * thermal stability
- * (very) low vapor pressure
- * electric conductivity
- * interesting solvent properties
- * liquid crystalline structures
- * high heat capacity
- * high electroelasticity
- * non flammability
- **⇔** designer solvents

Liquid Crystals

Solvents

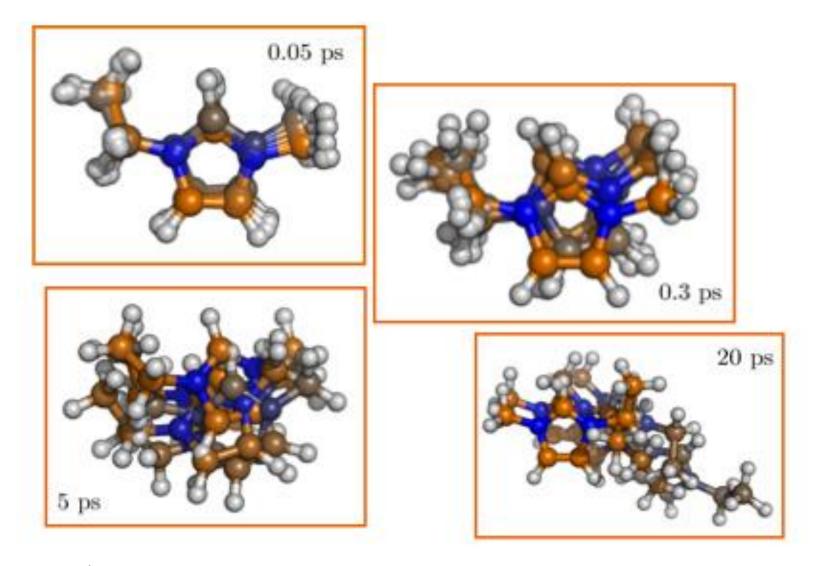
- bio-catalysis
- organic reactions & catalysis
- synthesis of nano-particles
- polymerization
- protein-crystallisation

scattering cross sections

element	σ_{coh}	σ_{inc}	σ_{scatt}	σ_{abs}
Н	1.7568	80.26	82.02	0.3326
D	5.592	2.05	7.64	0.000519
C	5.559	0	5.559	0.00353
O	4.232	0	4.232	0.0001
N	11.03	0.5	11.53	1.91
F	4.017	0.0008	4.018	0.0096
S	0.988	0	0.988	0.54

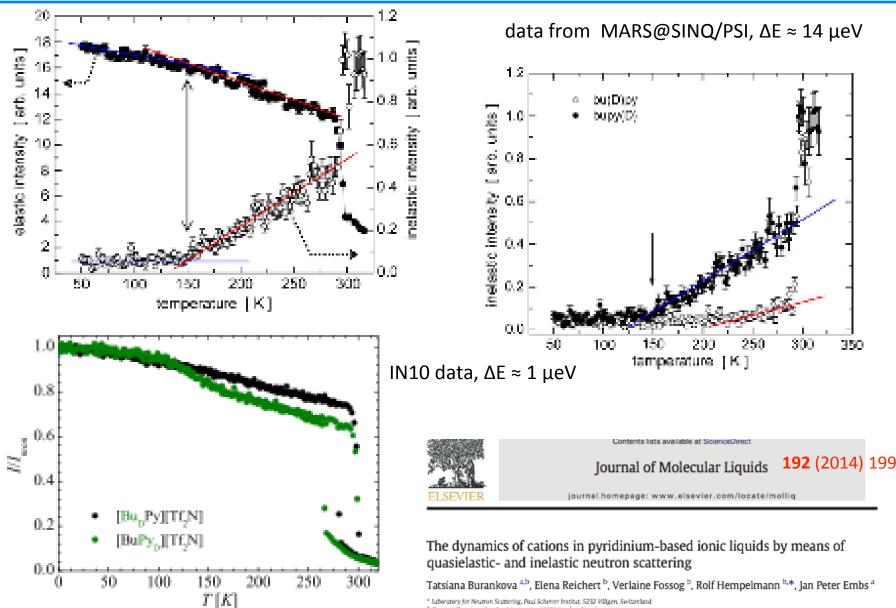
$$\sigma_{\rm scatt} = \sigma_{\rm coh} + \sigma_{\rm inc}$$

C₂H₅
,†N_
H^{VVV} C_2H_5 C_2H_5
O ₂ r ₁₅
_ O—Ş—CF₃


system	$\sigma_{\rm scatt}$ [b]	$\sigma_{\rm inc}$ [b]	$\sigma_{\rm abs}$ @ 5.75 Å	$\sigma_{\mathrm{inc}}/\sigma_{\mathrm{scatt}}$ [%]
$\overline{{ m BuPy-Tf_2N}}$	1275.6	1124.8	30.7	88.2
${\rm Bu_DPy-Tf_2N}$	606.1	420.8	21.2	69.4
$\mathrm{BuPy_D}\mathrm{-Tf_2N}$	901.6	731.7	25.4	81.2
$\mathrm{C}_{12}\mathrm{Py-Tf_2N}$	2632.5	2409.1	47.9	91.5
$\overline{ ext{TEA-TF}}$	1388.6	1284.8	25.0	92.5
$\mathrm{TEA_{D}}\mathrm{-TF}$	272.8	130.0	9.0	47.6

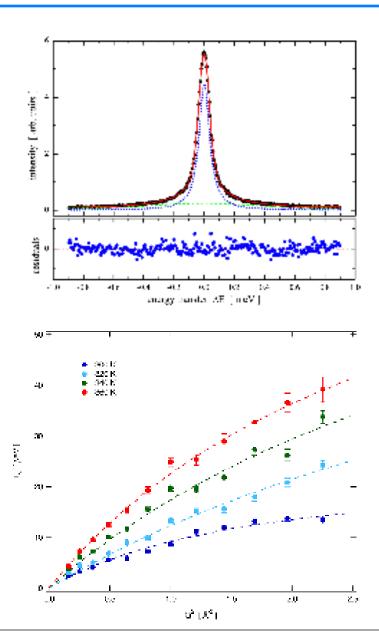
$$1b = 1barn = 10^{-24} cm^2$$

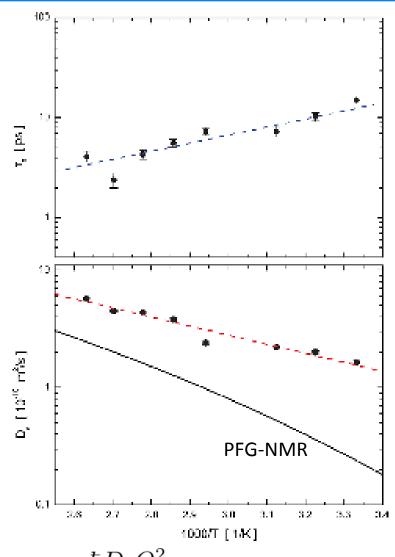
cation dynamics on different time scales



courtesy, B. Kirchner, U Bonn

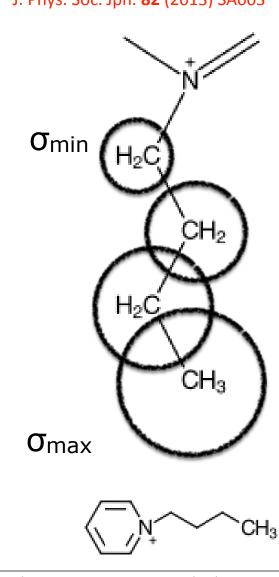
chain & ring melting, FEW experiments (elastic & inelastic)




³ Physical Chemistry, Sparland University, 66123 Sparbrücken, Germany

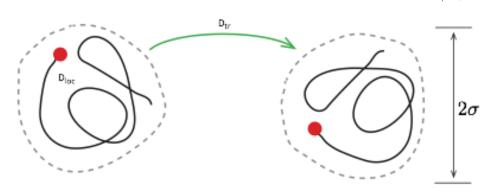
model independent analysis, T > T_m

 $\Gamma_2(Q) = \frac{\hbar D_s Q^2}{1 + D_s Q^2 \tau_0}$


Embs, Burankova et al. J.Phys.Chem. B **116** (2012), 13265

chain dynamics ⇒ diff. inside spherical confin. / ring deut.

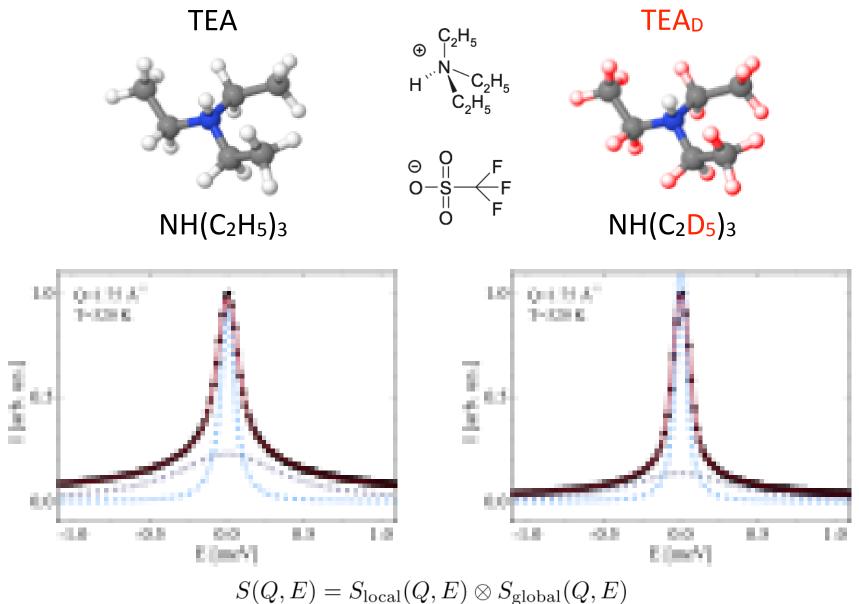
Embs, Burankova et al. J. Phys. Soc. Jpn. **82** (2013) SA003



$$S_I(Q,E) = I_0(Q) \cdot rac{1}{\pi} rac{\Gamma_{
m glob}}{\Gamma_{
m glob}^2 + E^2} \otimes$$

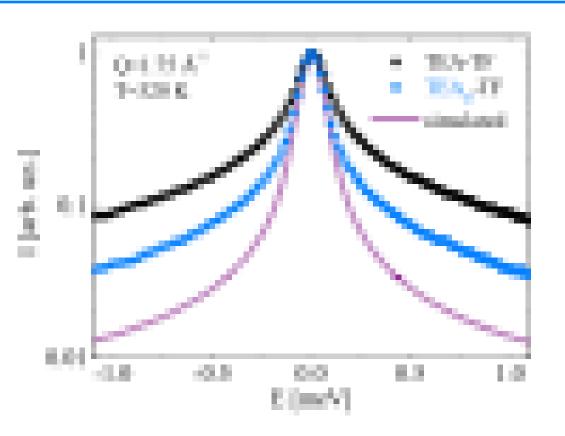
$$\otimes \left\{\int\limits_0^\infty f(r_\sigma;a,\sigma_{\mathrm{lgn}})S_{\mathrm{G}}(Q,E;r_\sigma)dr_\sigma
ight\}\otimes R(Q)+a+bE$$

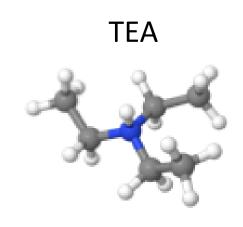
$$S_G(Q, E) = e^{-Q^2 \sigma^2} \left[\delta(E) + \sum_{k=1}^{\infty} \frac{(Q^2 \sigma^2)^n}{n!} \mathcal{L}(n\hbar D_{\text{loc}}/\sigma^2, E) \right]$$

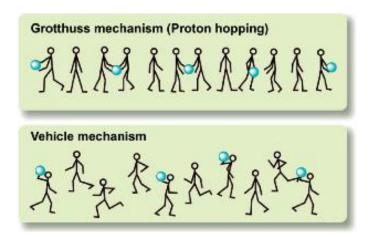

$$f(r; a, \beta) = \frac{\exp(-(\ln^2(r/a) - \beta^2)^2/2\beta^2)}{r\beta\sqrt{2\pi}}$$



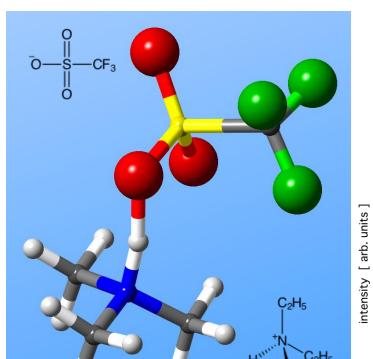
Kneller, PCCP **7** (2005), 2641 Volino et al., J Phys Chem B **110** (2006), 11217

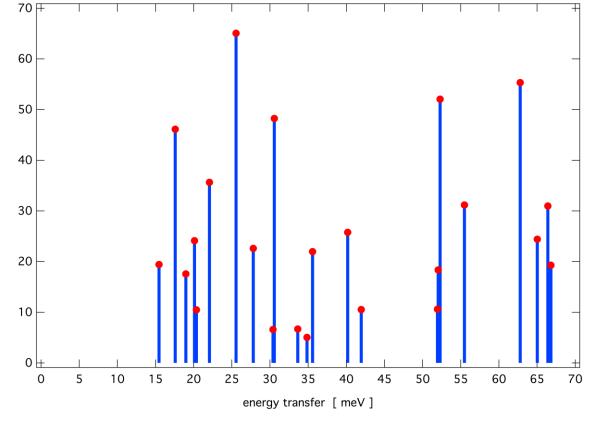






broad component in TEA_D-TF ⇒ H-bond dynamics?!?

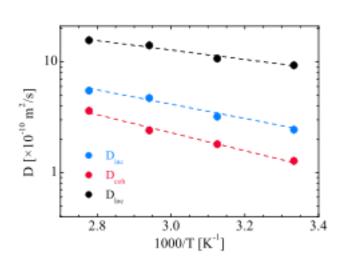


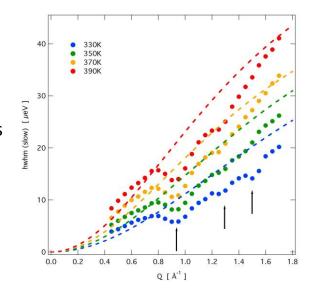


1st ab-initio MD results on TMA-TF


- **■** Coulomb, dipole-dipole, H-bonding ...
- force field generation
- **S**(Q,ω), ...

polarized neutrons ⇒ coherent/incoherent



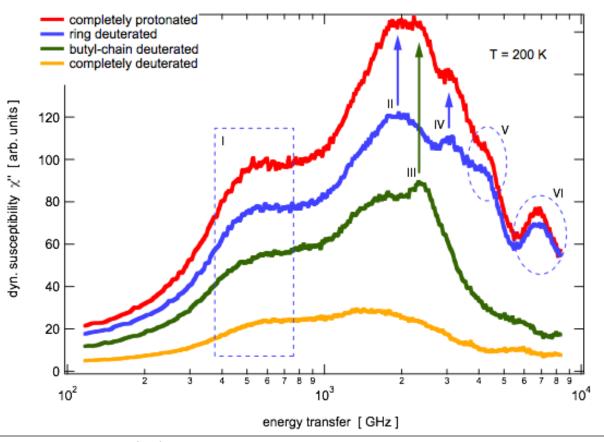


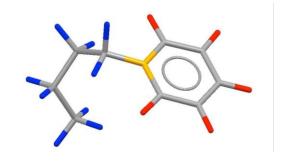
$$I_{\text{coh}} = I_{\text{corr}}^{\uparrow \uparrow} - \frac{1}{2} I_{\text{corr}}^{\uparrow \downarrow}$$
$$I_{\text{inc}} = \frac{3}{2} I_{\text{corr}}^{\uparrow \downarrow}$$

coherent/collective dynamics
cannot be neglected
(incoherent approx. fails),
but clear picture of it
still missing ⇒
MD-simulations + neutron results

outlook

- study of collective dynamics in ILs (using deuteration & polarized neutrons)
- H-bond dynamics in protic ILs → PhD project, SNF funded
- interaction of ILs with prototypical bio-structures, i.e. influence on properties and functions
 - → PSI-Fellow/COFUND in collab. with University College Dublin/School of Physics


inelastic neutron scattering ⇒ DOS



QENS ⇒ time scale of molecular rotations, reorientations diffusion mechanisms

- proton hopping (breaking/creating H-bonds) vs. vehicle mech.
- single-particle & collective dynamics → polarized neutrons!
- comparison to MD-results

Inelastic Neutron Scattering ⇒ studies of ion interactions (H-bond dynamics)

$$\chi''(E,T) = \frac{S(E)}{n_{\rm B}(E,T)}$$

$$n_{\rm B}(E,T) = (\exp(E/k_BT) - 1)^{-1}$$

$$S(E) = \sum_{2\theta} S(2\theta, E)$$

Acknowledgement

Tatsiana Burankova

Andrew Wildes

Gøran Nilsen

Tilo Seydel

Jacques Ollivier

Verlaine Fossog

Elena Reichert

Rolf Hempelmann

Antonio Benedetto

Pietro Ballone

U Tartu, Estonia

D7 @ ILL (France)

D7 @ ILL (France)

IN10 @ ILL (France)

IN5 @ ILL (France)

UdS / Phys. Chemistry (Germany)

UdS / Phys. Chemistry (Germany)

UdS / Phys. Chemistry (Germany)

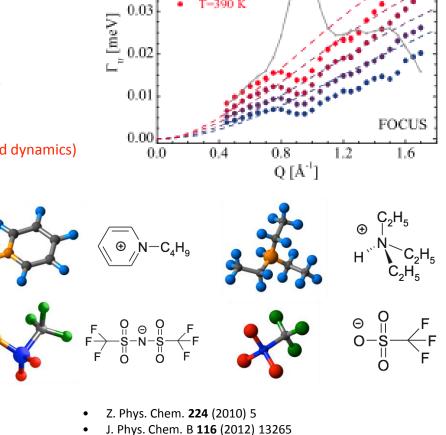
PSI & UC Dublin (CH & Ireland)

LaSapienza, U Rome (Italy)

UNIVERSITÄT DES SAARLANDES

SWISS NATIONAL SCIENCE FOUNDATION

ionic liquids


Ionic Liquids ⇒

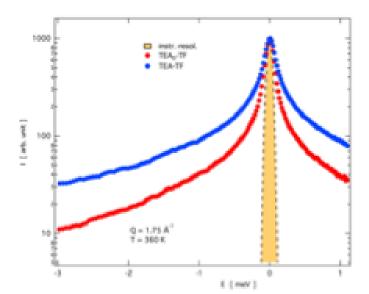
- tunable physico-chemical properties ⇒ **designer solvents**
- high thermal & electrochemical stability / wide liquid range
- applications: potential electrolytes for fuel cells, batteries, ...
- Coulomb, dipole-dipole interactions, H-bonding ...

QENS ⇒ time scale of molecular rotations, reorientations diffusion mechanisms

- proton hopping (breaking/creating H-bonds) vs. vehicle mech.
- single-particle & collective dynamics → polarized neutrons!
- comparison to MD-results

Inelastic Neutron Scattering ⇒ studies of ion interactions (H-bond dynamics)

T=330 K

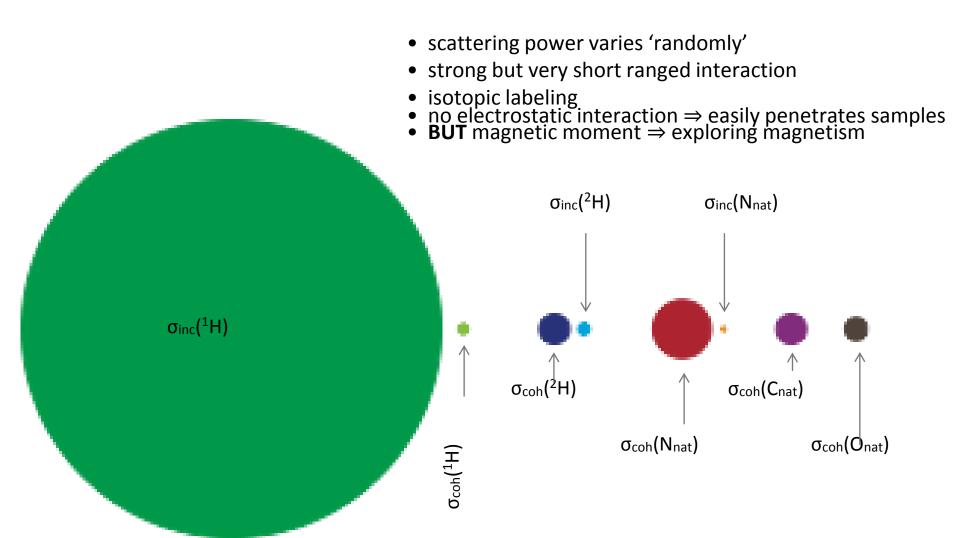

T=3.50 K

T=370 K

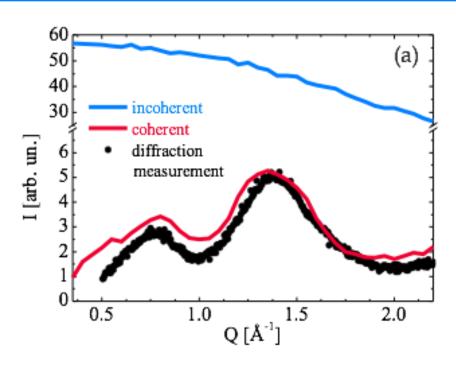
T-390 K

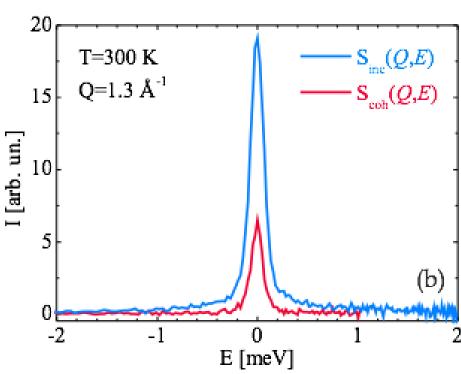
0.04

0.03

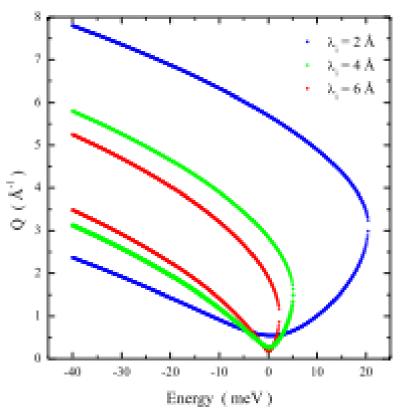


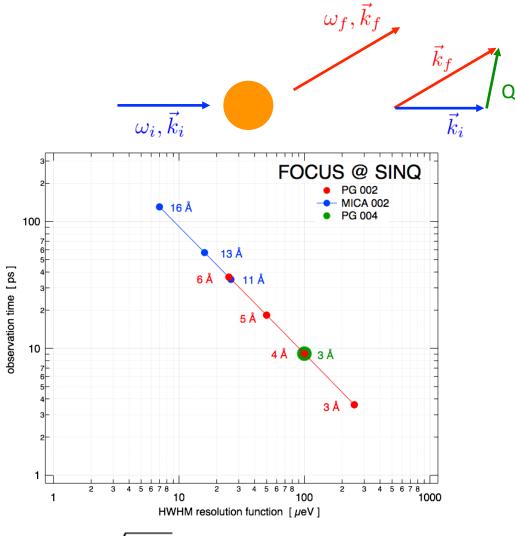
- J. Phys. Soc. Japan 82 (2013) SA003
- J. Mol. Liquids 192 (2014) 199
- J. Phys. Chem. B 118 (2015), 14452-14460
- J.Phys. Chem. B (2015) submitted


cross section σ (1 b = 1 barn = 10^{-24} cm²) area \Rightarrow prob. that a neutron will interact with a nucleus



D7 results - I / separation coh & inc contributions


$$I_{\uparrow\uparrow} = I_{\rm coh} + \frac{1}{3}I_{\rm inc}$$
 $I_{\uparrow\downarrow} = \frac{2}{3}I_{\rm inc}$



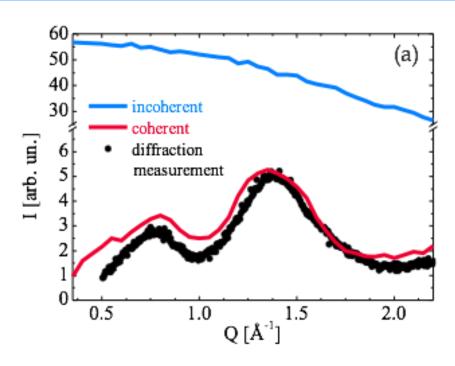
$$\hbar\omega = \hbar(\omega_f - \omega_i)$$
$$\hbar\vec{Q} = \hbar(\vec{k}_f - \vec{k}_i)$$

$$\Delta t_{
m obs} = rac{2\hbar\sqrt{\ln 2}}{\Delta E}$$

Ionic Liquids

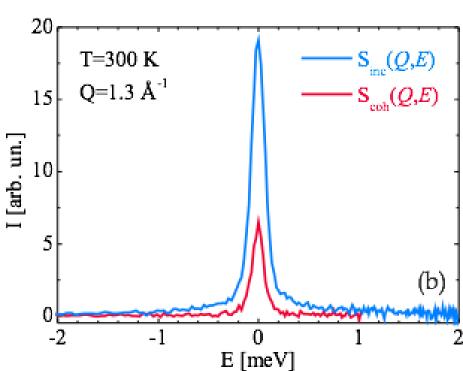
- > molten salts with $T_m \le 100^{\circ}C$ (ethylammonium nitrate by Paul Walden, 1914)
 - ions only
 - vapor pressure ≃ 0
 - wide liquid range
 - high thermal & electrochemical stability
 - designer solvents (i.e. tuneable physicochemical properties)
 - Coulomb, dipole-dipole, H-bonding ...
- > electrolytes in fuel cells, batteries ...

1-butylpyridinium (BuPy) bis(trifluoromathylsulfonyl)imide (Tf₂N)

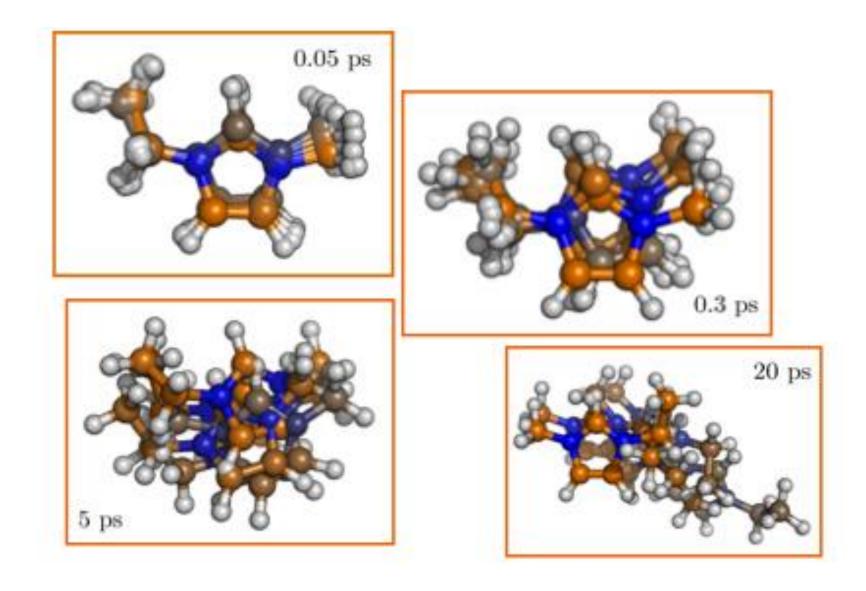

$$C_{2}H_{5}$$
 $C_{2}H_{5}$
 $C_{2}H_{5}$
 $C_{2}H_{5}$
 $C_{2}H_{5}$
 $C_{2}H_{5}$
 C_{3}
 C_{4}
 C_{5}
 C_{5}
 C_{5}
 C_{6}

triethylammonium (TEA)
trifluoromethanesulfonate (TF)

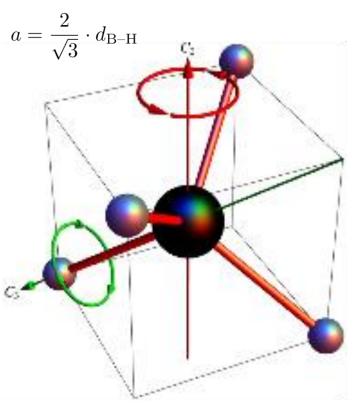
D7 results - I / separation coh & inc contributions



$$\begin{split} I_{corr}^{\uparrow\uparrow} &= I^{\uparrow\uparrow} + \frac{1}{R-1} \left[I^{\uparrow\uparrow} - I^{\uparrow\downarrow} \right] \\ I_{corr}^{\uparrow\downarrow} &= I^{\uparrow\downarrow} - \frac{1}{R-1} \left[I^{\uparrow\uparrow} - I^{\uparrow\downarrow} \right] \end{split}$$


R = flipping ratio

$$I_{\uparrow\uparrow} = I_{\rm coh} + \frac{1}{3}I_{\rm inc}$$
 $I_{\uparrow\downarrow} = \frac{2}{3}I_{\rm inc}$



[BH₄]⁻ subunit rot. motions

from J. Phys. B **45** (2012), 194003

PHYSICAL REVIEW B 81, 214304 (2010)

Rotational motion of BH₄ units in MBH₄ (M=Li,Na,K) from quasielastic neutron scattering and density functional calculations

Arndt Remhof, 1.* Zbigniew Łodziana, 1.2 Pascal Martelli, 1 Oliver Friedrichs, 1 Andreas Züttel, 1 Alexander V. Skripov, 3

Jan Peter Embs, 4.1 and Thierry Strässle4

LiBH₄ / NaBH₄ outstanding volumetric & gravimetric hydrogen density ⇒ possible H₂ storage materials

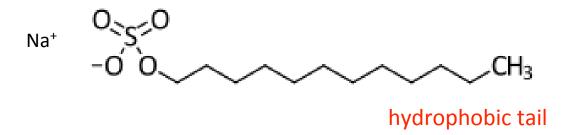
$$S_{\text{inc}}^{2\text{-site}} = A_0(Q)\delta(E) + [1 - A_0(Q)] \cdot \frac{1}{\pi} \frac{2\hbar/\tau_2}{(2\hbar/\tau_2)^2 + E^2}$$

$$A_0(Q) = \frac{1}{2} [1 + j_0(Qd)]$$
 $d = d_{B-H} \cdot 2\sqrt{\frac{2}{3}}$

$$B_0(Q) = \frac{1}{3} \left[1 + 2j_0(Qd) \right]$$

$$S_{\text{inc}}^{3\text{-site}} = \frac{1}{4}\delta(E) + \frac{3}{4} \left[B_0(Q)\delta(E) + \left[1 - B_0(Q)\right] \cdot \frac{1}{\pi} \frac{3\hbar/2\tau_2}{(3\hbar/2\tau_2)^2 + E^2} \right]$$

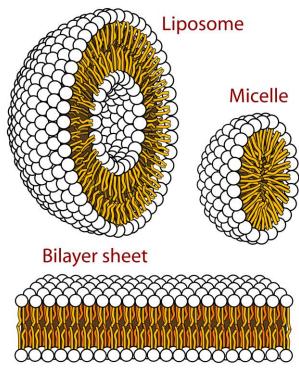
$$S_{\Sigma}(Q, E) = S_{\mathrm{inc}}^{2\text{-site}}(Q, E) \otimes S_{\mathrm{inc}}^{3\text{-site}}(Q, E)$$



Molecular Mobility in Solid Sodium Dodecyl Sulfate

S. Mitra, V. K. Sharma, V. Garcia Sakai, J. Peter Embs, and R. Mukhopadhyay.

J.Phys.Chem. B **115** (2011) 9732 Soft Matter **8** (2012) 7151

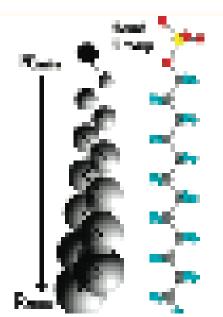


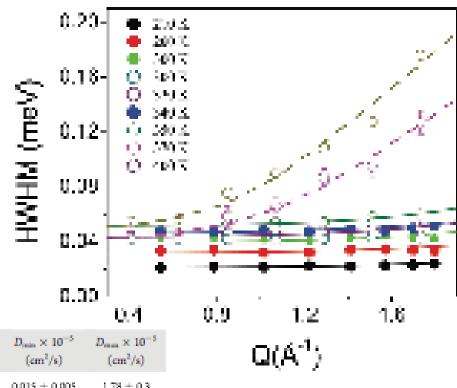
The dynamical landscape in CTAB micelles

V. K. Sharma, S. Mitra, V. Garcia Sakai, P. A. Hassan, J. Peter Embs and R. Mukhopadhyay

CetylTrimethylAmmonium Bromide = CTAB

$$CH_3$$
 Br $^-$
 $H_3C(H_2C)_{15}$ N^+ CH_3
 CH_3

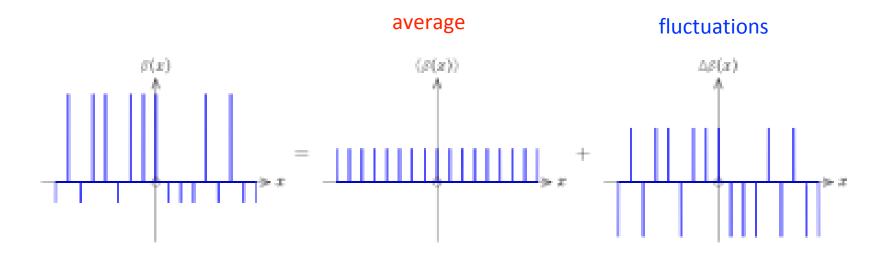




$$A_0(Q) \equiv \frac{1}{12} \sum_{k=1}^{12} A_0^0(QR_k) = \frac{1}{12} \sum_{k=1}^{12} \left[\frac{3j_1(QR_k)}{QR_k} \right]^2 \qquad \begin{array}{c} \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \end{array}$$

$$S_{\text{inc}}(Q,\omega) = \frac{1}{N} \sum_{j=1}^{N} \left[A_0^0(QR_j)\delta(\omega) + \frac{1}{\pi} \sum_{(l,n)\neq(0,0)} (2l+1) A_n^l(QR_j) \frac{\hbar(x_n^l)^2 D_j / R_j^2}{(\hbar(x_n^l)^2 D_j / R_j^2)^2 + \hbar^2 \omega^2} \right]$$

$$R_j \equiv rac{j-1}{N-1} \left[R_{
m max} - R_{
m min}
ight] + R_{
m min}$$
 ditto for D $_{
m j}$



T (K)	R _{min} (Å)	R _{max} (A)	$D_{min} \times 10^{-5}$ (cm^2/s)	$D_{\text{max}} \times 10^{-3}$ (cm ² /s)
370	0.004 ± 0.003	3.89 ± 0.3	0.015 ± 0.005	1.78 ± 0.3
400	0.002 ± 0.001	4.44 ± 0.3	0.06 ± 0.005	2.77 ± 0.3

due to **isotope & spin effects**, atoms of the same element are **not** identical!

coherent, scatt from average
$$b_{
m coh} = \langle b
angle$$

⇒ correlated dynamics (phonos, magnons, ...)

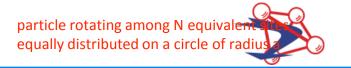
incoherent, scatt from fluctuations
$$b_{
m inc}^2 = \langle b^2
angle - \langle b
angle^2$$

⇒ self-correlations, stochastic motions (diffusion, reorientations, ...)

$$S_{\mathrm{inc}}(Q,\omega) = A_0(Q)\delta(\omega) + \sum_{j=1}^N A_j(Q)\mathcal{L}(\Gamma_j,\omega)$$

$$S_{\rm inc}(Q,\omega) = A_0(Q)\delta(\omega) + [1 - A_0(Q)]\mathcal{L}(\Gamma,\omega)$$

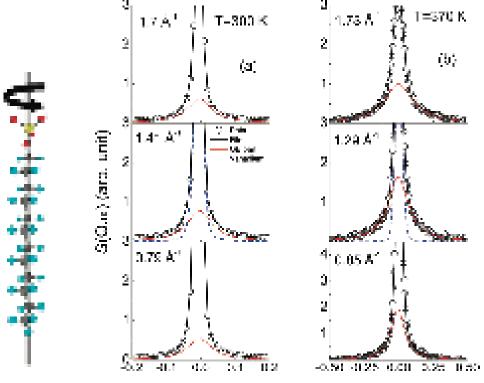
$$ext{EISF} = rac{I_{ ext{el}}(Q)}{I_{ ext{el}}(Q) + I_{ ext{qel}}(Q)}$$


space-FT of the particle distribution, taken at t⇒∞ and averaged over all its possible initial positions; provides info on the geometry of the molecular motion

localized/rotational motions \Rightarrow prob of finding a scatterer at infinite time within a small volume $\neq 0$! (\Rightarrow translational diffusion!)

$$S_{\rm inc}(Q,\omega) = (1-p)\delta(\omega) + p\left[A_0(Q)\delta(\omega) + \left[1 - A_0(Q)\right]\mathcal{L}(\Gamma,\omega)\right]$$

p = fraction of mobile particles/scatterers



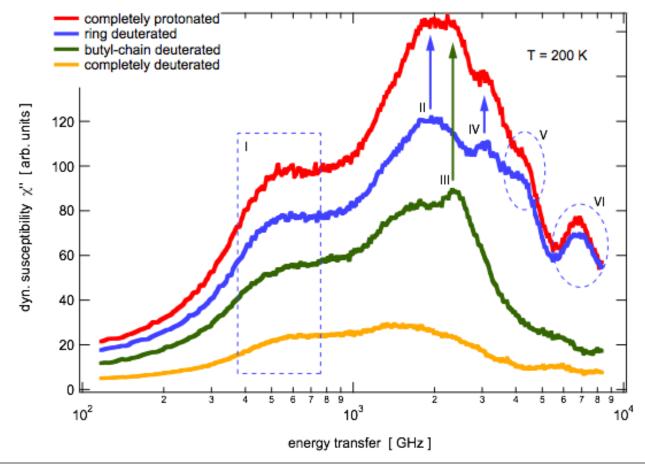
Molecular Mobility in Solid Sodium Dodecyl Sulfate

S. Mitra, V. K. Sharma, V. Garcia Sakai, J. Peter Embs, and R. Mukhopadhyay*,

$$S_{\rm inc}(Q,\omega) = B_0(Qa)\delta(\omega) + \sum_{n=1}^{N-1} B_n(Qa)\mathcal{L}_n(\hbar/\tau_n,\omega)$$

$$B_n(Qa) = \frac{1}{N} \sum_{p=1}^{N} j_0(2QA\sin(\pi p/N))\cos(2\pi np/N)$$

$$\frac{1}{\tau_n} = \frac{2}{\tau} \sin^2\left(\frac{n\pi}{N}\right)$$


 τ = average time spent on a site between 2 successive jumps

Ionic Liquids & INS

system	$\sigma_{\rm scatt}$ [b]	$\sigma_{\rm inc}$ [b]	$\sigma_{ m inc}/\sigma_{ m scatt}$ [%]
-BuPy $-$ Tf ₂ N	1275.6	1124.8	88.2
${ m Bu_DPy-Tf_2N}$	606.1	420.8	69.4
$\mathrm{BuPy_D}\mathrm{-Tf_2N}$	901.6	731.7	81.2

