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universe. The basic idea is known as the Kibble
mechanism after Tom Kibble who discovered it in
1976 [36], and although one can argue that it is not
strictly speaking applicable to grand unified theories
[38], the main conclusions are still valid [39,40].

For simplicity, let us consider the SO(3) Georgi–
Glashow model in which the Higgs field can be
thought of as a three-component vector. The early
universe was very hot, and if it was hot enough the
GUT symmetry would have been initially unbroken,
and the Higgs field was zero. When the universe
expanded and cooled down, it went through a phase
transition to the phase with the broken gauge
symmetry when the universe was very young, only
10735 s old. In this phase transition, the Higgs field
became non-zero, and because it is a vector it has to
have a direction. In order to minimise the energy, the
direction would have to be the same everywhere.

However, the transition took place in a finite time.
Remember that according to relativity, information
cannot travel faster than the speed of light. If you
consider two points in space that are so far apart that
information from one cannot reach the other before
the transition is completed, then those two points have
to choose the direction of the Higgs field independently
of each other. Because of the symmetry, every direction
is equally likely. Therefore it follows that after the
transition the Higgs field will be uniform on short
scales, up to the distance x that light was able to travel
during the transition, but random and uncorrelated at
longer distances. Roughly speaking, we can imagine
that the universe consists of domains of size x, in each
of which the direction of the Higgs field is uniform but
random. In the early universe, this correlation distance
cannot have been longer than the size of the particle
horizon, which is roughly given by the age of the
universe or the inverse of the expansion rate (or
Hubble rate) H at the time.

On the other hand, the Higgs field has to be
continuous, so where two domains meet, it will
interpolate smoothly between them. However, consider
a point between four domains. It is possible that, when
the field interpolates between each pair of them, it ends
up wrapping around the sphere in the internal space.
In that case, the field cannot continuously interpolate
between all four domains without vanishing in the
middle, and a monopole or an anti-monopole (a
monopole with negative magnetic charge) is formed
(see Figure 5). The probability that the directions in
the four domains are such that this happens is
independent of their size or any other parameter, so
it is simply some constant number which can be
calculated in principle but which is clearly going to be
not much less than one. Therefore one concludes that
roughly one monopole or anti-monopole is produced

per domain, or per particle horizon [36]. Because the
particle horizon was very short in the very early
universe, when the GUT phase transition would have
taken place, this leads to a very high density of
monopoles and anti-monopoles.

Nevertheless, the magnetic monopoles carry initi-
ally only a very small fraction of the total energy, most
of which is in the form of radiation. Because both
monopoles and anti-monopoles are produced in equal
numbers, they can initially meet and destroy each other
reducing their number density. However, after a while
those processes stop and then the number density
of monopoles decreases only because of the expansion
of the universe. As a result, the number density of
magnetic monopoles in the universe today would be
comparable to the number density of protons and
neutrons [10,35]. The problem is that the mass of a
monopole, at roughly 1016 GeV, is sixteen orders of
magnitude higher than the mass of a proton or
neutron. It is therefore absolutely clear that the
prediction cannot be valid.

One possible solution to this monopole problem is
that magnetic monopoles simply do not exist. How-
ever, in 1980 Alan Guth proposed an alternative
explanation in the form of a theory called inflation

Figure 5. A two-dimensional example of the Kibble
mechanism. The Higgs field is random at distances longer
than the correlation length x. Therefore we can imagine that
the universe consists of domains of size x, each with a
random but more or less uniform field direction (solid
arrows). The field interpolates continuously between any pair
of two domains (dashed arrows), but where three domains
meet, it may not be able to do that without vanishing in the
middle. In that case a topological defect (a vortex) is formed.
Similarly, in three dimensions, monopoles can be formed
where four domains meet.
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“... it is not certain that nobody has ever seen one. What seems certain
is that nobody has ever seen two.”Preskill, Ann. Rev. Nuc. Part. Sci. (1984); Cabrera, Phys.

Rev. Lett. (1982); Rajantie, Cont. Phys. (2012);

“Their low-energy physics exhibits an emergent gauge field and their
excitations are magnetic monopoles that arise from the fractionalization
of the microscopic magnetic spin degrees of freedom.”Castelnovo et al., Ann. Rev.

Cond. Matt. (2012)



+ Frustrated magnetism and rare earth pyrochlores
+ Spin ice:

- Coulomb phase
- Monopoles

+ Quantum spin ice:
- “Maxwell phase”
- Candidate materials

+ Tb2Ti2O7:
- Tb2Ti2O7 as a QSI
- Power-law correlations
- Magnetoelastic excitations



Spin liquids: frustration/competing interactions → degeneracy
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To address the problem of large neutron absorption in

natural dysprosium based materials we have grown an isoto-

pically enriched crystal of 162Dy2Ti2O7 specifically for use in

neutron scattering experiments. The details of the sample and

the experiments performed on it are given in Sec. II. The

experiments were designed to examine the nature of the pre-

sumed spin ice state that is established when the sample is

cooled in zero applied magnetic field.4,20 The data were mod-

eled using the “dipolar” spin ice model that considers further

neighbor dipole-dipole interactions as well as a small antifer-

romagnetic exchange coupling that can be estimated by fit-

ting the susceptibility31 or specific heat.20 Details of the di-

polar spin ice model,20 as applied to Dy2Ti2O7, are given in

Sec. II B of the current paper, while the comparison of theory

and experiment is given in Sec. III. The paper is concluded

with a discussion of the results, Sec. IV.

II. EXPERIMENT

A. Neutron scattering

Neutron scattering measurements were carried out on

PRISMA at the ISIS pulsed neutron source of the

Rutherford-Appleton Laboratory. A pulsed white neutron

beam is incident on the sample. PRISMA views a cold

!95 K" methane moderator and a supermirror guide system,
providing a high flux of long-wavelength neutrons allowing

measurement at relatively low #Q#. The neutrons scattered
from the sample are recorded in 16 detectors which cover a

range of 16° in scattering angle. From the neutron time of

flight, the scattering angle and the orientation of the sample

with respect to the incoming beam, the scattered intensity

can be determined as a function of the position in reciprocal

space. By rotating the crystal about the vertical axis, inten-

sity maps covering a large region of the scattering plane can

be constructed. This method is particularly useful for studies

of diffuse magnetic scattering. The average scattering angle

! of the 16 detectors used for the measurements is chosen as
a compromise between flux (at a given wave vector) and
background (due to air scattering). The advantages of mea-
suring the diffuse magnetic neutron scattering on PRISMA

have been clearly demonstrated using the example of

Ho2Ti2O7, where the dipolar spin ice nature of the zero-field

spin correlations has been unambiguously established.17 In

that and the current experiment the neutron scattering was

measured in the static approximation.33

Natural dysprosium contains seven isotopes, several of

which absorb neutrons quite strongly. This can make the de-

tection of weaker effects like diffuse scattering difficult or

impossible. To reduce this, an isotopically enriched sample

was used. The natural abundances, scattering lengths, and

cross sections for natural dysprosium and our sample are

given in Table I. Using the 162Dy isotope the average absorp-

tion cross section "̄a is reduced by a factor of 4.8 compared

to natural Dy. Since absorption attenuates scattered intensity

by a factor of the form exp!!N"̄a#" (where N is the number
density of scatterers per unit volume, "̄a is the average ab-

FIG. 1. Top: a unit cell of the pyrochlore lattice which consists

of four interpenetrating face centered cubic (fcc) Bravais sublat-
tices. Two spins related by an fcc translation are shown with anti-

ferromagnetic correlation. Correlations of this type give rise to the

zone-boundary scattering observed experimentally. Bottom: the

spin ice state on a single tetrahedron (bottom). A macroscopic spin
ice state is constructed by stacking such local arrangements on the

lattice.

TABLE I. Isotopic abundances and absorption cross sections

!"a" of natural dysprosium and the enriched sample used in these

experiments (Ref. 32).

Isotope Natural Sample "a

Abundance Content (barn)
(%) (%)

Natural 994.(13.)
156Dy 0.06 $0.01 33.(3.)
158Dy 0.1 $0.01 43.(6.)
160Dy 2.34 0.02 56.(5.)
161Dy 19 0.47 600.(25.)
162Dy 25.5 96.8 194.(10.)
163Dy 24.9 2.21 124.(7.)
164Dy 28.1 0.5 2840.(40.)
Sample 207.6

T. FENNELL et al. PHYSICAL REVIEW B 70, 134408 (2004)

134408-2
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Fig. 1.3. Characteristic behaviour of a geometrically frustrated antiferromagnet.
Left: sketch of χ−1 vs T . Right: sketch of S(Q,ω) vs Q

the temperature scale set by interaction strength: instead, the paramagnetic
phase extends to temperatures T ! ΘCW. Ordering or spin freezing may ap-
pear at a lower temperature Tc, but a large value for the ratio f ≡ |ΘCW|/Tc

is a signature of frustration [1]. This behaviour is illustrated schematically in
Fig. 1.3; references to experimental papers are given in Table 1.1.

More detailed information on low temperature behaviour is provided by
magnetic neutron scattering (see the chapter by S. T. Bramwell). Again, we
sketch typical observations in Fig. 1.3, and give references in Table 1.1. The
dynamical structure factor S(Q,ω) has a broad peak at finite wavevector Q,
showing that spin correlations are predominantly short-range and antiferro-
magnetic. The width of this peak indicates a correlation length of order the
lattice spacing, while the small value of the elastic scattering cross-section for
Q → 0 shows that correlations suppress long wavelength fluctuations in mag-
netisation density. This form stands in contrast both to that in unfrustrated
antiferromagnets, where Néel order leads to magnetic Bragg peaks, and to
that in systems with short-range ferromagnetic correlations, where the struc-
ture factor is peaked at Q = 0. Inelastic scattering has a width in frequency
ω that decreases with decreasing temperature, and in materials that show
spin freezing, scattering weight is transferred from the inelastic to the elastic
response with little change in Q-dependence on cooling through Tc.

Table 1.1. Three geometrically frustrated antiferromagnets

Material Structure |ΘCW| Tc References

SrGa3Cr9O19 pyrochlore slabs 515 K 4 K [22–25]

hydronium iron jarosite kagome 700 K 14 K [26]

Y2Mo2O7 pyrochlore 200 K 22 K [27,28]

Frustration index: θCW /TN(>> 1)

Chalker, arXiv.0901.3492



Rare earth pyrochlores: Ho2Ti2O7 and Dy2Ti2O7

+ R2Ti2O7 series
+ Fd 3̄m (two pyrochlore lattices)
+ R3+ magnetic, Ti4+ non-magnetic

+ TbTiO - spin liquid
+ ErTiO - O-by-D
+ YbTiO - QSI
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where Bq
k denote the CF parameters and Cq

k are the compo-

nents of the tensor operator Ck as defined in Ref. 13. Here,

we treat the CF interaction in the LS coupling scheme as a

perturbation within the ground-state J multiplet only.

The unpolarized neutron scattering cross-section for a

transition from the CF state !i# to ! j# is in the dipole approxi-
mation given by14

$2%

$&$'
!N" (e2

mec
2# 2 k1k0 f 2!Q "e#2W) i

$!* j !mp!i#!2+!Ei#E j",'", !2"

where ,' denotes the energy transferred from the neutron to

the sample, e#2W the Debye-Waller factor, f (Q) the mag-

netic formfactor, ) i the occupancy of the state !i# with en-
ergy Ei , and mp the component of the magnetic-moment

operator perpendicular to the scattering vector Q. The re-

maining symbols have their usual meaning. The distinct de-

pendence of the scattering intensity of CF transitions on tem-

perature and momentum transfer, c.f. Eq. !2", allows to
distinguish them from other excitations, like phonons.

Figure 2 shows energy spectra observed for Ho2Ti2O7.

At 10 K, there are clearly visible transitions A-E , which all

decrease in intensity with increasing momentum transfer !as
shown in Fig. 3 for the transition C" and increasing tempera-
ture !see Fig. 2" and are therefore identified as ground-state
CF transitions. At higher temperatures, additional transitions

F , F!, G , and G! from excited states are observed. An

unambiguous assignment of these observed transitions to a

level scheme is however not possible because the powder

average of the cross section Eq. !2" does not yield unique
selection rules in the given symmetry. We have therefore

employed the following procedure in order to obtain a reli-

able quantization of the CF interaction. First, the CF param-

eters Bq
k were parametrized as15

Bq
k!WFkqxkq , !3"

where F20!3600, F40!4004, F43!527)5, F60!1784.64,
F63!118.976!105, and F66!81.12&31,16 and W is an

overall scale factor determining the total splitting of the

ground-state J multiplet. This parametrization is advanta-

geous because the range of the parameters xkq is limited by

the condition

-
k ,q

!xkq!!1, !4"

thus allowing a scan of the entire parameter space .xkq/ for
sets that describe well the observed spectra. After a compre-

hensive stepwise search, we found that only a restricted re-

gion of the parameter space is consistent with the observed

data. In a second step, we used a least-squares procedure to

refine the CF parameters in profile fits to the observed energy

spectra shown in Fig. 2, taking into account the instrumental

resolution function and allowing for an intrinsic Lorentzian

broadening of the individual CF transitions. Using different

sets within the region found in the first step as start param-

eters, we always arrived at the same resulting CF parameters

!in meV" B0
2!68.2%1.1, B0

4!274.8%1.7, B3
4!83.7%1.1,

B0
6!86.8%0.8, B3

6!#62.5%0.6, and B6
6!101.6%1.2,17

which give an overall good agreement with the observed

FIG. 1. CF energy level scheme for the Ho3" ion in Ho2Ti2O7. The arrows

denote observed transitions.

FIG. 2. Energy spectra for Ho2Ti2O7 measured on LRMECS. The solid line

denotes the calculated spectra using the best fitted CF parameters, including

an intrinsic Lorentzian broadening of the transitions as well as the instru-

mental resolution. The dotted lines denote the individual, Lorentzian broad-

ened CF transitions.

FIG. 3. Q dependence of the scattering intensity integrated over the energy

transfer ,'!60%1 meV !transition C". The solid line denotes the square of
the magnetic formfactor, f 2(Q), for Ho3" in the dipole approximation on

top of a flat background.

5915J. Appl. Phys., Vol. 87, No. 9, 1 May 2000 Rosenkranz et al.
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In Fig. 2a inset we show xdc(T ) from 2 to 20 K, illustrating
the small ferromagnetic, FM, intercept, corresponding to a Weiss
constant vw ! 0:5 K, where 1=x ¼ const:=ðT ! vwÞ. The C(T)/T data,
which extend down to lower temperatures (Fig. 2a), show a much
broader peak than usually seen for an antiferromagnetic, AF,
transition. The lack of a clear ordering feature in C(T) is consistent
with a picture where the spins ‘freeze’ in a random configuration as
a result of geometrical frustration. The absence of magnetic order in
a system with no structural disorder is by itself unusual. The first
reported example of such a system is another pyrochlore com-
pound, Y2Mo2O7, where despite the absence of any measured
structural disorder, long-range magnetic order is not observed10—
instead, spin glass freezing among Heisenberg-like Mo4+ ions sets in
at T ! 0:3vw ! 15 K. But existing susceptibility measurements11 on
Dy2Ti2O7 do not show the sharp cusp expected for a spin glass, but
rather a broad feature peaked at T ! 0:7 K, indicating a different
type of frozen spin state for this Ising-type spin system.

The most surprising aspect of our data, however, is found when
integrating C(T)/T from 0.2 to 12 K to obtain the total spin entropy
(Fig. 2b). This temperature range incorporates all appreciable
observed contributions to C(T)/T. We obtain DSð0:2; 12Þ ¼
ð0:67 " 0:04ÞRln2, that is, a shortfall of "1/3 of the total spin
entropy. It has been previously noted, based on measurements of
C(T) only up to 1.5 K and a numerical extrapolation to higher
temperatures, that the peak height is consistent with reduced
entropy11: but it was suggested that the extrapolation was too
simple, and that the missing entropy would be found for
T # 1:5 K. We see no evidence for missing entropy for T # 1:5 K

and, although it is possible that additional entropy is developed
below 0.2 K, we think it unlikely for the following reasons. First,
C(T)/T drops by almost two orders of magnitude from 1 to 0.5 K
indicating near-complete spin freezing, and second, there is no
structural reason to assume a bimodal distribution of entropy-loss
processes, for example, due to two different exchange interactions.
In addition, our Monte Carlo simulation reproduces the observed
C(T)/T peak height and shape (Fig. 2a). (The Monte Carlo simu-
lation was performed on a sample of size 8 $ 8 $ 8 tetrahedra
(2,048 spins) and "104 Monte Carlo steps per spin. The spin–spin
interaction was assumed to be purely dipole–dipole but with a
g-factor reduced by 25% from the J ¼ 15=2 Lande value. This is
most likely the result of the compensating effect of a small
admixture of superexchange interaction. Justification for this,
and further details, will be given elsewhere (A.P.R. et al., manu-
script in preparation).

The comparison of the measured entropy with the prediction of
Pauling for ice Ih, Rðln2 ! ð1=2Þlnð3=2ÞÞ, is shown in Fig. 2b. To test
the idea that there exists a contribution to ground-state entropy
from a different energetically unfavoured state, we applied a small
magnetic field, H, to reduce the energy barriers for spin reorienta-
tion. As shown in Fig 2a and b, an applied field of 0.5 T results not
only in a shift of C(T)/T to higher temperatures, but also in an
increase of the integrated entropy, DS(0.2, 12), from 0.67Rln2 to
0.85Rln2. The increase of temperature where C(T)/T is appreciable
is expected, because Zeeman splitting increases with field. The
increase of total DS, however, underscores the existence of addi-
tional entropy beyond that contained in the H ¼ 0 peak. The

0

1

2

a

T (K)

 H = 0

 H = 0.5 T

C
/T

 (
J
 m

o
l–

1
K

–
2
)

0 2 4 6 8 10 12
0

2

4

b
Rln2

R(ln2 - 1/2ln3/2)

S
 (

J
 m

o
l–

1
K

–
2
)

 H = 0

 H = 0.5 T

T (K)

0 5 10 15 20
0.0

0.5

1.0

1.5

 1
/χ

 (
m

o
l 
D

y
 p

e
r 

e
.m

.u
.)

Figure 2 Specific heat and entropy of the spin-ice compound Dy2Ti2O7

showing agreement with Pauling’s prediction for the entropy of water ice Ih,

Rðln2 ! ð1=2Þlnð3=2ÞÞ. a, Specific heat divided by temperature of Dy2Ti2O7 in H ¼ 0

and 0.5T. The dashed line is a Monte Carlo simulation of the zero-field C(T)/T, as

discussed in the text. b, Entropy of Dy2Ti2O7 found by integrating C/T from 0.2 to

14K. The value of Rðln2 ! ð1=2Þlnð3=2ÞÞ is that found for ice Ih and Rln2 is the full spin

entropy. Inset, susceptibility (M/H) of Dy2Ti2O7 in a field of 0.02T.
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Spin ice: Hamiltonians
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symmetry axes !100", !110", and !111". Figure 1a shows
the scattering pattern at T # 50 mK. One of the main
features of the experimental data is the “four-leaf clover”
of intense scattering around 0, 0, 0. There is also strong

FIG. 1 (color). (a) Experimental neutron scattering pattern of
Ho2Ti2O7 in the $hhl% plane of reciprocal space at T # 50 mK.
Dark blue shows the lowest intensity level, red-brown the high-
est. Temperature dependent measurements have shown that the
sharp diffraction spots in the experimental pattern are nuclear
Bragg peaks with no magnetic component. (b) I$q% for the
nearest neighbor spin ice model at T ! 0.15J . (c) I$q% for the
dipolar spin ice model at T ! 0.6 K. The areas defined by
the solid lines denote the experimental data region of (a).

scattering around 0, 0, 3 and a broad region of slightly
weaker scattering around 3&2, 3&2, 3&2. These intense
regions are connected by narrow necks of intensity giving
the appearance of bow-ties. The width of the intense
regions indicates short-range correlations on the order of
one lattice spacing. Qualitatively, similar scattering has
been observed in ice itself [21].

To model this data, we use the standard expression for
the neutron scattered intensity I$q% [22], along with the
Hamiltonian [23–25]:

H ! 2J
X

'ij(
Szi

i ? S
zj

j

1 Dr3
nn

X

i.j

Szi
i ? S

zj

j

jrij j3
2

3$Szi
i ? rij% $Szj

j ? rij%
jrijj5

,

(1)

where Ising spins Szi
i of unit length are constrained to their

local zi ! '111( axes; J is a near neighbor exchange cou-
pling, and D is the dipolar coupling. Because of the local
Ising axes, the effective nearest neighbor energy scales are
Jnn ) J&3 and Dnn ) 5D&3 [23–25].

The near neighbor spin ice model [1,16] corresponds to
D ! 0 and J positive (ferromagnetic). Data were simu-
lated with 3456 spins (6 3 6 3 6 cubic unit cells) at
T&J ! 0.15 where the model is effectively in an ice-rules
ground state. The calculated pattern is shown in Fig. 1b.
It successfully reproduces the main features of the experi-
mental pattern, but there are differences, notably in the
extension of the 0, 0, 0 intense region along !hhh" and
the relative intensities of the regions around 0, 0, 3 and
3&2, 3&2, 3&2. Also, the experimental data shows much
broader regions of scattering along the diagonal directions.
Clearly, the experimental spin correlations do not reflect a
completely disordered arrangement of ice-rule states, but
some states are favored over others [24,25].

The more complete dipolar spin ice model [23–25]
has Dnn ! 2.35 K, fixed by the lattice constant, and
Jnn ! 20.52 K, a negative (antiferromagnetic) parameter
determined by fitting the peak temperature of the electronic
magnetic heat capacity (see below). Spin ice behavior
emerges in this model from the dominant effect of the
long-range nature of dipolar interactions [23–25], and
which accounts quantitatively for the heat capacity data
of Dy2Ti2O7 (taken from Ref. [2]) [23,24]. Using single
spin flip dynamics, I$q% was calculated [22] on a system
size of 1024 spins (4 3 4 3 4) at T ! 0.6 K where
significant ground state correlations have developed, using
standard Ewald summation techniques which properly
handle infinite summation of dipole-dipole energy terms
(see Refs. [23,24]). The calculated pattern is shown in
Fig. 1c. It captures most details of the experimental pat-
tern missed by the near neighbor spin ice model in Fig. 1b,
such as the four intense regions around 0, 0, 0, the relative
intensities of the regions around 0, 0, 3 and 3&2, 3&2, 3&2,
and the spread of the broad features along the diagonal.

047205-2 047205-2

Bramwell, PRL, 2001

H = −J
∑
〈ij〉 Si · Sj

HDSM =
∑

n=1,3(−Jn
∑
〈ij〉 S

zi
i · Szj

j ) +

Dr3
nn

∑
j>i

Szi
i ·S

zj
j

|rij |3 −
3(Szi

i ·rij )(S
zj
j ·rij )

|rij |5 (den Hertog, PRL, 2000)

scattering vector q, N is the number of spins and f!jqj" is
the Dy3# magnetic form factor [25]. For comparison with
experiment, I!q" is adjusted by an overall scale factor and a
slowly varying linear-in- jqj background. The experimen-
tal diffuse neutron scattering, measured in the elastic ap-
proximation in the (hhl) plane (from Ref. [7]), is shown in
Fig. 1(a). As previously observed [7], in addition to struc-
tural Bragg peaks [e.g., (004), (222)] and bright broad

features at (001), (003) and ( 32
3
2
3
2 ), the experimental I!q"

is further decorated by hexagonal loops of diffuse scatter-
ing running along the Brillouin zone boundaries.

The first model of correlations we examine is phenome-
nological and based on postulating an ansatz for hsisji in
(1). We assume that hsisji can be viewed as generated by
static clusters that remain uncorrelated between them-
selves. Each cluster is a zero-magnetization hexagonal
loop of spins that circulate perpendicular to the loop nor-
mal. These clusters are the discrete equivalent of the
‘‘emergent’’ clusters used to describe the inelastic I!q" in
ZnCr2O4 [17] [see Fig. 1(c) in Ref. [17]]. Taking into
account that all spins on a pyrochlore lattice can be
grouped into nonoverlapping hexagons without breaking
the ice rules, that hexagon normals have four possible
orientations, and that each hexagon has two possible senses
of ‘‘spin circulation’’ around the normal, I!q" can then be
calculated using Eq. (1). Figure 1(b) shows I!q" calculated
using the spin cluster scattering function. This model
describes the experimental data quite well. The selection
of hexagonal clusters as effective degrees of freedom in
Dy2Ti2O7 does not incorporate any microscopic informa-
tion about the host material, and could be viewed as
another example [17] of emergent composite spin clusters
in frustrated systems.

The second approach we use to determine hsisji is
microscopic. The s-DSM was previously shown to account
fairly well for the spin ice phenomenology of Dy2Ti2O7

[3,22,26]. It comprises the magnetostatic dipole interac-
tion, which gives a ferromagnetic nearest-neighbor cou-
pling, that competes with a weaker antiferromagnetic
nearest-neighbor exchange interaction J1. Sufficiently
strong antiferromagnetic J1 would lead to long-range order
[22,23]. It is the interplay between the properties of the
spin ice manifold and the symmetry and long-range nature
of the dipolar interaction that leads to a correlated spin ice
state over an extended temperature range [22,23,27].
Surprisingly, the s-DSM is much less successful than the
simple phenomenological cluster model at describing I!q".

Monte Carlo (MC) simulations have shown [7] that the
s-DSM correctly describes the location and relative inten-
sity of the strong I!q" features, but fails to reproduce the
hexagonal zone boundary scattering (ZBS), Fig. 1(c). We
interpret this as a sign that the s-DSM is incomplete and
needs to be extended [11,28].
Dy2Ti2O7 displays a number of phase transitions and

other structured response in an applied magnetic field H
[2,4–6,8–11]. Independently of the disagreement between
Figs. 1(a) and 1(c), the necessity to adjust the s-DSM was
previously also suggested by the observation that, while it
qualitatively explains the in-field transitions, the s-DSM
does not correctly predict their temperatures [28], unless
properly adjusted by perturbative exchange couplings be-
yond J1. Here, we consider a generalized dipolar spin ice
model (g-DSM) of Dy2Ti2O7 that includes second J2 and
third J3 nearest-neighbor exchange couplings:

FIG. 1 (color online). Neutron scattering intensity I!q" of
Dy2Ti2O7 as a function of the wave vector. (a) Experimental
elastic scattering intensity at 300 mK [7] in the (hhl) planes of
the reciprocal space is notably amassed along the hexagonal
zone boundaries. (b) I!q" calculated using the model of un-
correlated hexagonal spin clusters (see text). (c) I!q" obtained
from MC simulations on the s-DSM of Dy2Ti2O7 [22] describes
the main experimental features, but is inadequate in reproducing
the ZBS [7]. (d) The g-DSM allows for an excellent match
between the theoretical and experimental I!q", and allows us
to identify that correlations beyond 3rd nearest neighbors are the
microscopic origin behind the ZBS. (e, f) Quantitative compari-
son of the experimental (a) and theoretical (b),(c),(d) data along
a cut through the reciprocal space chosen to emphasize the
mismatch with the s-DSM. Panels (c),(d),(e),(f ) produced by
MC simulations of 8192 $ 83 % 16 spins.
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TF, PRB, 2004; Yavors’kii, PRL, 2008



Spin ice: “Classical spin liquid” → Coulomb phase/monopoles

+ Ice rule: 2-in-2-out
+ Local degrees of freedom map to non-divergent field

Isakov et al. PRL (2004, 2005); Henley, Ann. Rev. Cond. Matt. (2010); Castelnovo et al. Nature (2008); see also
Rhyzkin JETP (2005)



Spin ice: Coulomb phase → pinch points

Isakov et al. PRL (2004, 2005); TF et al. Science
(2009); Henley, Ann. Rev. Cond. Matt. (2010)

+ ∇·M(r) = 0⇒ k·M(k) = 0
+ Correlations have spatial

dependence of dipolar
interaction: pinch points
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in large part on exchange constants that vary with distance 16 . ! us 
a change of lattice constant from 10.1 to 9.93    Å , as achieved by sub-
stituting Ti for Ge in Dy 2 Ti 2 O 7  ( Fig. 2 ), may be su"  cient to radically 
alter the chemical potential. We have discovered that this is indeed 
the case, and that Dy 2 Ge 2 O 7 , which has a much smaller lattice con-
stant than any spin ice hitherto investigated, lies almost precisely 
on the boundary of the strongly and weakly correlated regimes in 
 Figure 1 . ! is means that it has signi# cant monopole dimerization 
at all measured temperatures. 

 It should be noted that the chemical potential and phase behav-
iour discussed here is not the same as those discussed in refs   16,22 in 
connection with a # eld-induced phase transition 29 . ! us the authors 
of ref.   16 argue that the magnetic # eld in that case favours ordering 
of positive and negative monopoles on di$ erent sublattices, leading 
to the phase transition, and use the terminology  ‘ staggered chemi-
cal potential ’  to describe this. Experimental evidence in support of 
this scenario is presented in ref.   22. However, the chemical potential 
we refer to is very di$ erent in that it tunes the number density of 
monopoles without favouring any local ordered arrangement, and 
is thus equivalent to the chemical potential of ions in an electrolyte 
(which is not true of the  ‘ staggered chemical potential ’  of ref.   16).  

 Results  
  Pauling entropy   .   Phase pure cubic Dy 2 Ge 2 O 7  and Ho 2 Ge 2 O 7  were 
prepared and characterized as described in the Methods. Here 
we describe our results in detail for the Dy compound only, and 
simply note that we have performed a similar characterization 
of the Ho compound, which proved to be less interesting in 
the present context, as it has a more typical chemical potential 
( Fig. 1 ). ! e magnetic entropy determined by integrating the speci# c 
heat divided by temperature ( c   m   /  T ) is shown in  Figure 2 , where the 
Pauling residual entropy expected for spin ice 8  is extremely well 
reproduced. Magnetometry measurements on Dy 2 Ge 2 O 7  showed 
this material to have a very similar magnetic moment to Dy 2 Ti 2 O 7 . 
Incurring negligible error, we henceforth assume that the magnetic 
moment per Dy is equal in the two materials (9.87   µ   B ) 15 .   

  Debye-H ü ckel theory   .   In  Figure 3,  we show the measured  c   m   /  T  
plotted against temperature and # tted to Debye-H ü ckel theory with 
monopole chemical potential   ν      =    (3.35    ±    0.05)   K. ! e method we 

use has been developed to extend Debye-H ü ckel theory to a good 
approximation into the high-temperature regime; when applied to 
Dy 2 Ti 2 O 7  this method gives a similarly good # t to  c   m  ( T ) /  T  with a 
chemical potential of the expected magnitude. It is based on map-
ping the system to a lattice gas with site exclusion. ! e lattice gas 
is considered to have a temperature-varying chemical potential 
equal to the sum of the true chemical potential as de# ned in ref. 
  28 and the standard Debye-H ü ckel Coulombic correction to the 
chemical potential 30 . Without the latter correction, the predicted 
speci# c heat (dotted line in  Fig. 3 ) describes the experimental data 
well in the limit of high and low temperature, highlighting that this 
approach is a robust method of deriving an experimental estimate 
of the monopole chemical potential that is not signi# cantly biased 
by the limitations of Debye-H ü ckel theory. In passing, we note that 
the origin of the approximate collapse of the experimental data and 
Debye-H ü ckel calculation onto the ideal lattice gas model at high 
temperature has a di$ erent origin to that at low temperature. In the 
latter case, the monopole gas is su"  ciently dilute that interactions 
can be neglected, whereas in the former case, a dense and interact-
ing monopole gas reproduces apparent ideal gas behaviour, as the 
result strong Coulombic screening. 

 As a further test for consistency, we may use our # tted value of   ν   
to derive a value of the e$ ective near-neighbour coupling constant, 
 J  e$  , according to the relationship discussed in ref.   16, and then com-
pare this with a  J  e$   estimated from the temperature of the speci# c 
heat maximum, as discussed in ref.   31. ! e result is  J  e$      =    (0.62    ±    0.1) 
K, (0.60    ±    0.1) K, respectively, estimates that are equal, within exper-
imental error. For Dy 2 Ti 2 O 7 , the corresponding value is  J  e$    ≈  1.1   K, 
which is roughly twice as large. ! e large di$ erence is accounted 
for by a more negative (antiferromagnetic) exchange contribution 
to the spin – spin interaction in Dy 2 Ge 2 O 7  that opposes the positive 
(ferromagnetic) dipolar coupling, that is almost the same in the two 
compounds.   
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    Figure 2    |         Proof that Dy 2 Ge 2 O 7  (open) and Ho 2 Ge 2 O 7  (solid) have the 
characteristic Pauling zero point entropy of spin ice and water ice. The 
experimental molar entropy, found by integrating the magnetic specifi c 
heat  C   m   divided by temperature  T , when referenced to its high temperature 
value of 2 R ln(2) per diamond lattice site, reveals a zero temperature 
component of  R ln(3 / 2) equal to the Pauling value. The inset shows the 
Rietveld refi ned x-ray powder diffraction pattern of the cubic pyrochlore 
phase of Dy 2 Ge 2 O 7  with a lattice parameter of 9.9290(5)  Å . Errors in the 
data are smaller than the symbols and represent     ±    1  σ  .  
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      Figure 3    |         Measured heat capacity per mole of Dy 2 Ge 2 O 7  at zero fi eld 
compared with theoretical models. Main fi gure: the modifi ed Debye-
H ü ckel theory (Black line), with monopole chemical potential   ν      =    3.35(5) 
K the only adjustable parameter, gives an excellent description of the 
experimental magnetic heat capacity of Dy 2 Ge 2 O 7  (points). Dashed black 
line shows the heat capacity of an ideal lattice gas with onsite exclusion 
with the same chemical potential. This model describes the data well at 
low temperatures where Coulomb interactions may be neglected, and at 
high temperatures where the interactions are strongly screened. Inset: the 
effect of varying chemical potential from     −    3.35   K (appropriate to Dy 2 Ge 2 O 7  
(DGO)) to     −    4.35   K (appropriate to Dy 2 Ti 2 O 7  (DTO)).  
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In Fig. 2a inset we show xdc(T ) from 2 to 20 K, illustrating
the small ferromagnetic, FM, intercept, corresponding to a Weiss
constant vw ! 0:5 K, where 1=x ¼ const:=ðT ! vwÞ. The C(T)/T data,
which extend down to lower temperatures (Fig. 2a), show a much
broader peak than usually seen for an antiferromagnetic, AF,
transition. The lack of a clear ordering feature in C(T) is consistent
with a picture where the spins ‘freeze’ in a random configuration as
a result of geometrical frustration. The absence of magnetic order in
a system with no structural disorder is by itself unusual. The first
reported example of such a system is another pyrochlore com-
pound, Y2Mo2O7, where despite the absence of any measured
structural disorder, long-range magnetic order is not observed10—
instead, spin glass freezing among Heisenberg-like Mo4+ ions sets in
at T ! 0:3vw ! 15 K. But existing susceptibility measurements11 on
Dy2Ti2O7 do not show the sharp cusp expected for a spin glass, but
rather a broad feature peaked at T ! 0:7 K, indicating a different
type of frozen spin state for this Ising-type spin system.

The most surprising aspect of our data, however, is found when
integrating C(T)/T from 0.2 to 12 K to obtain the total spin entropy
(Fig. 2b). This temperature range incorporates all appreciable
observed contributions to C(T)/T. We obtain DSð0:2; 12Þ ¼
ð0:67 " 0:04ÞRln2, that is, a shortfall of "1/3 of the total spin
entropy. It has been previously noted, based on measurements of
C(T) only up to 1.5 K and a numerical extrapolation to higher
temperatures, that the peak height is consistent with reduced
entropy11: but it was suggested that the extrapolation was too
simple, and that the missing entropy would be found for
T # 1:5 K. We see no evidence for missing entropy for T # 1:5 K

and, although it is possible that additional entropy is developed
below 0.2 K, we think it unlikely for the following reasons. First,
C(T)/T drops by almost two orders of magnitude from 1 to 0.5 K
indicating near-complete spin freezing, and second, there is no
structural reason to assume a bimodal distribution of entropy-loss
processes, for example, due to two different exchange interactions.
In addition, our Monte Carlo simulation reproduces the observed
C(T)/T peak height and shape (Fig. 2a). (The Monte Carlo simu-
lation was performed on a sample of size 8 $ 8 $ 8 tetrahedra
(2,048 spins) and "104 Monte Carlo steps per spin. The spin–spin
interaction was assumed to be purely dipole–dipole but with a
g-factor reduced by 25% from the J ¼ 15=2 Lande value. This is
most likely the result of the compensating effect of a small
admixture of superexchange interaction. Justification for this,
and further details, will be given elsewhere (A.P.R. et al., manu-
script in preparation).

The comparison of the measured entropy with the prediction of
Pauling for ice Ih, Rðln2 ! ð1=2Þlnð3=2ÞÞ, is shown in Fig. 2b. To test
the idea that there exists a contribution to ground-state entropy
from a different energetically unfavoured state, we applied a small
magnetic field, H, to reduce the energy barriers for spin reorienta-
tion. As shown in Fig 2a and b, an applied field of 0.5 T results not
only in a shift of C(T)/T to higher temperatures, but also in an
increase of the integrated entropy, DS(0.2, 12), from 0.67Rln2 to
0.85Rln2. The increase of temperature where C(T)/T is appreciable
is expected, because Zeeman splitting increases with field. The
increase of total DS, however, underscores the existence of addi-
tional entropy beyond that contained in the H ¼ 0 peak. The
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Figure 2 Specific heat and entropy of the spin-ice compound Dy2Ti2O7

showing agreement with Pauling’s prediction for the entropy of water ice Ih,

Rðln2 ! ð1=2Þlnð3=2ÞÞ. a, Specific heat divided by temperature of Dy2Ti2O7 in H ¼ 0

and 0.5T. The dashed line is a Monte Carlo simulation of the zero-field C(T)/T, as

discussed in the text. b, Entropy of Dy2Ti2O7 found by integrating C/T from 0.2 to

14K. The value of Rðln2 ! ð1=2Þlnð3=2ÞÞ is that found for ice Ih and Rln2 is the full spin

entropy. Inset, susceptibility (M/H) of Dy2Ti2O7 in a field of 0.02T.
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Monte Carlo (MC) simulations of C/T.

Dirac Strings and Magnetic Monopoles
in the Spin Ice Dy2Ti2O7
D. J. P. Morris,1* D. A. Tennant,1,2* S. A. Grigera,3,4* B. Klemke,1,2 C. Castelnovo,5 R. Moessner,6
C. Czternasty,1 M. Meissner,1 K. C. Rule,1 J.-U. Hoffmann,1 K. Kiefer,1 S. Gerischer,1
D. Slobinsky,3 R. S. Perry7

Sources of magnetic fields—magnetic monopoles—have so far proven elusive as elementary particles.
Condensed-matter physicists have recently proposed several scenarios of emergent quasiparticles
resembling monopoles. A particularly simple proposition pertains to spin ice on the highly frustrated
pyrochlore lattice. The spin-ice state is argued to be well described by networks of aligned dipoles
resembling solenoidal tubes—classical, and observable, versions of a Dirac string. Where these tubes end,
the resulting defects look like magnetic monopoles. We demonstrated, by diffuse neutron scattering, the
presence of such strings in the spin ice dysprosium titanate (Dy2Ti2O7). This is achieved by applying a
symmetry-breaking magnetic field with which we can manipulate the density and orientation of the
strings. In turn, heat capacity is described by a gas of magnetic monopoles interacting via a magnetic
Coulomb interaction.

Despite searching within the cosmic radi-
ation, particle colliders, and lunar dust,
free magnetic monopoles have not been

observed (1, 2). This is particularly disappointing
given that unification theories have predicted
their existence. Dirac’s original vision for mono-
poles involves a string singularity carrying mag-
netic flux, the ends of which act as north and
south monopoles. We report the observation of
analogous strings and magnetic monopoles in
spin ice, magnetic compound Dy2Ti2O7 with
a pyrochlore lattice structure. This is a real-
ization of magnetic fractionalization in three
dimensions, a separation of north and south
monopoles.

Dysprosium titanate contains magnetic 162Dy
ions in the highly frustrated pyrochlore lattice
that have ferromagnetic exchange and dipolar
interactions between the spins. The pyrochlore
lattice is a three-dimensional (3D) structure built
from corner-sharing tetrahedra (Fig. 1A). Spin ice is
realized on this lattice when spins placed on the
vertices are constrained to point radially into or out of
the tetrahedra and are coupled ferromagnetically—
or, as in the case of Dy2Ti2O7, through dipolar
coupling (3). This leads to the lowest-energy spin
configurations obeying the “ice rules” of two spins
pointing into, and two out of, each tetrahedron.
This is equivalent to the physics of the proton

arrangement in ice, where two protons sit close to
each oxygen and two far away—and indeed spin
ice exhibits the Pauling ice entropy S ≈ (R/2) ln(3/2)
per spin (4, 5), reflecting a huge low-energy den-
sity of states in zero magnetic field.

Each spin can be thought of as a small dipole
or solenoid channelingmagnetic flux into and out
of a tetrahedron. The ice rules are too weak to
impose magnetic long-range order, but they do
induce dipolar power-law correlations resulting
in characteristic pinch-point features in neutron
scattering (6–10).

A spin flip violates the ice rule in two
tetrahedra, at a cost of ~2 K per tetrahedron in
Dy2Ti2O7. It was proposed that to a good
approximation this can be viewed as the for-
mation of a pair of monopoles of opposite sign in
adjacent tetrahedra (11). These monopoles are
deconfined (Fig. 1A); they can separate and
move essentially independently. Thus, the equi-
librium defect density is determined not by the
cost of a spin flip but by the properties of the gas
of interacting monopoles. In Fig. 1B, we com-
pare themeasured heat capacity toDebye-Hückel
theory (12), which describes a gas of monopoles
with Coulomb interactions. This theory is appro-
priate to low temperatures, where the monopoles
are sparse, and it captures the heat capacity quan-
titatively. At higher temperatures, spin ice turns
into a more conventional paramagnet and the
monopole description breaks down (13). Together
with a recent analysis of dynamic susceptibility
(14), this lends strong support to the monopole
picture of the low-temperature phase of spin ice.

Monopole deconfinement is reflected in the
spin configurations: As the two monopoles of
opposite sign separate, they leave a tensionless
string of reversed spins connecting them. These
strings of reversed flux between the monopoles
can be viewed as a classical analog of a Dirac
string. In the theory of Dirac (15), these are
infinitely narrow, unobservable solenoidal tubes
carrying magnetic flux density (B-field) emanat-
ing from themonopoles. Here, the strings are real
and observable thanks to the preformed dipoles
of the spins; strings can change length and shape
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Fig. 1. Gas of deconfined magnetic monopoles. (A) The Ising
spins are constrained to point along the direction connecting the
centers of the two tetrahedra they belong to. The lowest energy

for a tetrahedron is obtained for a two-in-two-out configuration, as illustrated. There are six such
configurations with net ferromagnetic moments along one of the six equivalent 〈100〉 directions. The
noncollinearity of the Ising axes is the source of the frustration in spin ice. In Dy2Ti2O7 the “Ising” crystal
field doublet is separated from other levels by more than 100 K. Applying a field, B || [001], results in a
preference for aligning the tetrahedral magnetization with the applied field direction (arrow). In the 3D
pyrochlore lattice, Dirac strings of flipped spins terminate on tetrahedra where magnetic monopoles
reside. (B) The measured heat capacity per mole of Dy2Ti2O7 at zero field (open squares) is compared with
a Debye-Hückel theory for the monopoles (blue line) and the best fit to a single-tetrahedron (Bethe lattice)
approximation (red line). The ice-blue background indicates the spin-ice regime; the yellow background
indicates the paramagnetic regime.
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 In the past two decades, remarkable technical advances have 
been made in pressure cell technology allowing researchers to 
carry out high-pressure investigations in the ! elds of chemistry, 

biochemistry, earth and planetary sciences and condensed matter 
physics. High pressure is used both in the laboratory and on an 
industrial scale to produce, for example, arti! cial diamonds, new 
superconductors and new forms of matter 1,2 . Pressure is also used 
to drive materials into new electronic states. Under high pressure, 
some materials become superconductors, others undergo magnetic 
phase transitions, and others undergo metal – insulator phase transi-
tions 3,4 . In magnetic pyrochlore oxides, pressure has been shown to 
freeze the spin-liquid ground state of Tb 2 Ti 2 O 7  (ref.   5). Pressure is 
therefore an important weapon in a researcher ’ s arsenal for explor-
ing phase space. 

 " e canonical spin ices, Ho 2 Ti 2 O 7  and Dy 2 Ti 2 O 7 , with magnetic 
Ho or Dy ions 6 – 9 , are part of the pyrochlore family of oxides of 
general formula A 2 B 2 O 7  (ref.   10). " ey have face-centred cubic (fcc) 
lattice constants of  a  fcc  ≈ 10.1    Å . " ese materials are not very com-
pressible, and studies with high physical pressure have not revealed 
any signi! cant modi! cation of the spin ice properties 11 . Signi! cantly 
reduced lattice constants can be obtained in principle by replacing 
Ti 4    +      with a smaller B ion, such as Ge 4    +     , but it is found that at ambi-
ent pressure the pyrochlore structure is only stable, if the ratio of 
the ionic radii,   ρ      =     r   A   /  r   B  , is less than 1.55 (ref.   10). Dy 2 Ge 2 O 7  and 
Ho 2 Ge 2 O 7 , with   ρ    ≈  1.8, adopt a tetragonal structure, when synthe-
sized under ambient pressure 12 . " e range of stability of the cubic 
pyrochlore form can be increased using a high pressure, high tem-
perature synthesis, which extends the regime of stability beyond 
  ρ    ≈  1.8 (ref.   13). " e cubic pyrochlore form of Dy 2 Ge 2 O 7  prepared in 
this way has a lattice constant of 9.9290    Å , equivalent to a canonical 
spin ice under enormous physical pressure 11 . 

 " e microscopic  ‘ dipolar spin ice ’  Hamiltonian of Ho 2 Ti 2 O 7  and 
Dy 2 Ti 2 O 7  includes complex dipolar and superexchange interac-
tions 14,15 . However, to a good approximation, it may be represented 
by a much simpler spin Hamiltonian that is equivalent to the original 
spin ice model 6,7 . In this description 9,14 , there are three parameters: 
the lattice constant  a  fcc , the rare earth magnetic moment   µ  , and an 
e# ective near-neighbour exchange parameter  J  e#  . " e equilibrium 
statistical mechanics then maps onto the statistical mechanics of 
idealized water ice, such that the low-temperature magnetic state is 
equivalent to the proton disordered state of water ice H 2 O (refs   6,7), 
and shares with it the Pauling con! gurational entropy 8 . " e spin ice 
state is thus equivalent to pure H 2 O, and its excitations are equiva-
lent to the ionic defects H 3 O     +      and OH  −   (refs   6,7,16,17). " e success 
of this  ‘ near-neighbour spin ice ’  description may be attributed to 
the almost perfect self-screening of the dipole – dipole interaction 
between rare earth moments in the e# ective ground state 14 . 

 Although dipole – dipole interactions may be ignored in the 
spin ice ground state, in ref.   17 it was shown that inclusion of the 
dipole – dipole interaction in the excited states causes the  ‘ ionic 
defects ’  of spin ice to behave as magnetic charges that interact via 
the magnetic Coulomb law. " e description of these defects as mag-
netic monopoles was ! rmly established in ref.   16 by approximat-
ing the microscopic spin Hamiltonian Ho 2 Ti 2 O 7  and Dy 2 Ti 2 O 7  to a 
 ‘ dumbbell model ’ , where ! nite dipoles replace spins. " e dumbbell 
model approximately restores dipolar corrections that are integrated 
out in the near-neighbour description, but still retain three param-
eters 16 . " ese are the monopole  ‘ contact distance ’ ,  a a= 3 4fcc /    (the 
lattice constant of the diamond lattice inhabited by the monopo-
les), the elementary monopole charge  Q     =    2  µ   /  a  (refs   16,17) and the 
monopole  ‘ self-energy ’    ν  , that replaces  J  e#   (ref.   16). In ref.   18, the self 
energy   ν   was equated with a monopole chemical potential in the 
grand canonical ensemble. 

 " e monopole system is a magnetic Coulomb gas of decon-
! ned monopoles and antimonopoles with overall charge neutrality, 
which closely approximates a magnetic electrolyte ( ‘ magnetolyte ’ ) 

in the grand canonical ensemble 18 – 24 . Accordingly, experiments on 
the canonical spin ices reveal strong evidence of the standard ! eld 
response of such a system, the Wien e# ect 19,23,24 , as well as of the 
applicability of Debye-H ü ckel theory in zero applied ! eld 21 . In the 
magnetolyte description of spin ice, the scale of length may be set 
by the contact distance  a  and the scale of energy may be set by the 
Coulomb energy at contact,   µ   0  Q  2  / 4  π a . Di# erent spin ices — that is, 
di# erent triplets {Q,  a ,   ν  } — should have identical monopole interac-
tion potentials if energies and lengths are scaled by the above charac-
teristic quantities — so called  ‘ corresponding states ’  behaviour. " us, 
the zero-! eld magnetolyte properties should be fully controlled by 
the dimensionless temperature  T  * (    =    4  π k   B  T a  /   µ   0  Q  2 ) and the dimen-
sionless monopole density per lattice site  x  ( ∝  ca  3 , where  c  is the con-
centration). " ese two parameters,  T  *  and  x , map out a phase space 
which, as mentioned above, is expected to be surprisingly rich. 

 " e  x     −     T  *  phase behaviour of spin ice has not been determined 
in detail, but by analogy with electrolyte models 25 – 27 , we would 
expect a gradual transition from a weakly correlated magnetolyte 
at relatively large  T  *  /  x  to a strongly correlated magnetolyte at small 
 T  *  /  x  ( Fig. 1 ). However, in a given spin ice,  T  *  and  x  cannot be inde-
pendently varied as  x  is a function of  T  *  and the chemical potential 
  ν   (Methods). " us, any one spin ice material maps out a single tra-
jectory in the space of  x  and  T  * , and existing spin ices are found to 
be ! rmly in the weakly correlated regime ( Fig. 1 ). In this regime, 
the fraction of bound monopole-antimonopole pairs is su%  ciently 
small that it may be neglected for most purposes (the ! eld response 
being an exception: see ref.   23). Considering, for example, Dy 2 Ti 2 O 7 , 
the chemical potential,   ν  , is found to be     −    4.35   K (ref.   28), which 
consists (in magnitude) of half the energy required to create a (    +        −    ) 
contact pair,   ε   pair  /  k   B    ≈  5.7   K, plus half the energy required to unbind 
the pair,   µ   0  Q  2  / 4  π ak   B    ≈  3   K. As the dipole (    +        −    ) pair is much higher in 
energy than the individual (    +     or     −    ) charges, the pairing tendency is 
weak. In contrast, it can be seen that   ν    ≈  3   K is the chemical potential 
that puts monopole – antimonopole pairs or (hetero-)dimers at the 
same free energy as free monopoles, and thus marks the boundary 
between the weakly and strongly correlated regimes ( Fig. 1 ). 

 " e only way to experimentally approach the strongly correlated 
regime in  Figure 1  is therefore to change the chemical potential   ν   by 
changing the energy of pair creation. Fortunately, the latter depends 
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          Figure 1    |         Creating strongly correlated magnetic monopoles in spin ice. 
A corresponding states diagram for spin ice in terms of reduced 
temperature  T  *  and monopole density,  x . A given spin ice material maps 
out a single trajectory but the canonical spin ices such as Dy 2 Ti 2 O 7 , 
Ho 2 Ti 2 O 7  lie in the weakly correlated regime (green), rather than in the 
strongly correlated regime (blue). By high-pressure synthesis, we have 
created a new spin ice Dy 2 Ge 2 O 7  that lies on the boundary of strong 
and weak correlation (red line), and hence has signifi cant monopole 
dimerization at all measured temperatures (we have also created Ho 2 Ge 2 O 7  
but this lies in the weakly correlated regime). The strongly correlated 
regime (lower right) has monopole correlations beyond simple pairing, 
potentially leading to a gas-liquid transition or charge ordering.  
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in large part on exchange constants that vary with distance 16 . ! us 
a change of lattice constant from 10.1 to 9.93    Å , as achieved by sub-
stituting Ti for Ge in Dy 2 Ti 2 O 7  ( Fig. 2 ), may be su"  cient to radically 
alter the chemical potential. We have discovered that this is indeed 
the case, and that Dy 2 Ge 2 O 7 , which has a much smaller lattice con-
stant than any spin ice hitherto investigated, lies almost precisely 
on the boundary of the strongly and weakly correlated regimes in 
 Figure 1 . ! is means that it has signi# cant monopole dimerization 
at all measured temperatures. 

 It should be noted that the chemical potential and phase behav-
iour discussed here is not the same as those discussed in refs   16,22 in 
connection with a # eld-induced phase transition 29 . ! us the authors 
of ref.   16 argue that the magnetic # eld in that case favours ordering 
of positive and negative monopoles on di$ erent sublattices, leading 
to the phase transition, and use the terminology  ‘ staggered chemi-
cal potential ’  to describe this. Experimental evidence in support of 
this scenario is presented in ref.   22. However, the chemical potential 
we refer to is very di$ erent in that it tunes the number density of 
monopoles without favouring any local ordered arrangement, and 
is thus equivalent to the chemical potential of ions in an electrolyte 
(which is not true of the  ‘ staggered chemical potential ’  of ref.   16).  

 Results  
  Pauling entropy   .   Phase pure cubic Dy 2 Ge 2 O 7  and Ho 2 Ge 2 O 7  were 
prepared and characterized as described in the Methods. Here 
we describe our results in detail for the Dy compound only, and 
simply note that we have performed a similar characterization 
of the Ho compound, which proved to be less interesting in 
the present context, as it has a more typical chemical potential 
( Fig. 1 ). ! e magnetic entropy determined by integrating the speci# c 
heat divided by temperature ( c   m   /  T ) is shown in  Figure 2 , where the 
Pauling residual entropy expected for spin ice 8  is extremely well 
reproduced. Magnetometry measurements on Dy 2 Ge 2 O 7  showed 
this material to have a very similar magnetic moment to Dy 2 Ti 2 O 7 . 
Incurring negligible error, we henceforth assume that the magnetic 
moment per Dy is equal in the two materials (9.87   µ   B ) 15 .   

  Debye-H ü ckel theory   .   In  Figure 3,  we show the measured  c   m   /  T  
plotted against temperature and # tted to Debye-H ü ckel theory with 
monopole chemical potential   ν      =    (3.35    ±    0.05)   K. ! e method we 

use has been developed to extend Debye-H ü ckel theory to a good 
approximation into the high-temperature regime; when applied to 
Dy 2 Ti 2 O 7  this method gives a similarly good # t to  c   m  ( T ) /  T  with a 
chemical potential of the expected magnitude. It is based on map-
ping the system to a lattice gas with site exclusion. ! e lattice gas 
is considered to have a temperature-varying chemical potential 
equal to the sum of the true chemical potential as de# ned in ref. 
  28 and the standard Debye-H ü ckel Coulombic correction to the 
chemical potential 30 . Without the latter correction, the predicted 
speci# c heat (dotted line in  Fig. 3 ) describes the experimental data 
well in the limit of high and low temperature, highlighting that this 
approach is a robust method of deriving an experimental estimate 
of the monopole chemical potential that is not signi# cantly biased 
by the limitations of Debye-H ü ckel theory. In passing, we note that 
the origin of the approximate collapse of the experimental data and 
Debye-H ü ckel calculation onto the ideal lattice gas model at high 
temperature has a di$ erent origin to that at low temperature. In the 
latter case, the monopole gas is su"  ciently dilute that interactions 
can be neglected, whereas in the former case, a dense and interact-
ing monopole gas reproduces apparent ideal gas behaviour, as the 
result strong Coulombic screening. 

 As a further test for consistency, we may use our # tted value of   ν   
to derive a value of the e$ ective near-neighbour coupling constant, 
 J  e$  , according to the relationship discussed in ref.   16, and then com-
pare this with a  J  e$   estimated from the temperature of the speci# c 
heat maximum, as discussed in ref.   31. ! e result is  J  e$      =    (0.62    ±    0.1) 
K, (0.60    ±    0.1) K, respectively, estimates that are equal, within exper-
imental error. For Dy 2 Ti 2 O 7 , the corresponding value is  J  e$    ≈  1.1   K, 
which is roughly twice as large. ! e large di$ erence is accounted 
for by a more negative (antiferromagnetic) exchange contribution 
to the spin – spin interaction in Dy 2 Ge 2 O 7  that opposes the positive 
(ferromagnetic) dipolar coupling, that is almost the same in the two 
compounds.   
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    Figure 2    |         Proof that Dy 2 Ge 2 O 7  (open) and Ho 2 Ge 2 O 7  (solid) have the 
characteristic Pauling zero point entropy of spin ice and water ice. The 
experimental molar entropy, found by integrating the magnetic specifi c 
heat  C   m   divided by temperature  T , when referenced to its high temperature 
value of 2 R ln(2) per diamond lattice site, reveals a zero temperature 
component of  R ln(3 / 2) equal to the Pauling value. The inset shows the 
Rietveld refi ned x-ray powder diffraction pattern of the cubic pyrochlore 
phase of Dy 2 Ge 2 O 7  with a lattice parameter of 9.9290(5)  Å . Errors in the 
data are smaller than the symbols and represent     ±    1  σ  .  
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      Figure 3    |         Measured heat capacity per mole of Dy 2 Ge 2 O 7  at zero fi eld 
compared with theoretical models. Main fi gure: the modifi ed Debye-
H ü ckel theory (Black line), with monopole chemical potential   ν      =    3.35(5) 
K the only adjustable parameter, gives an excellent description of the 
experimental magnetic heat capacity of Dy 2 Ge 2 O 7  (points). Dashed black 
line shows the heat capacity of an ideal lattice gas with onsite exclusion 
with the same chemical potential. This model describes the data well at 
low temperatures where Coulomb interactions may be neglected, and at 
high temperatures where the interactions are strongly screened. Inset: the 
effect of varying chemical potential from     −    3.35   K (appropriate to Dy 2 Ge 2 O 7  
(DGO)) to     −    4.35   K (appropriate to Dy 2 Ti 2 O 7  (DTO)).  
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  Bjerrum pairing   .   ! e measured chemical potential,     −    3.35   K, puts 
Dy 2 Ge 2 O 7  in a regime where monopole dimerization should be 
very signi# cant. To con# rm this, we have used the classic theory 
of Bjerrum 32 , who separated the contribution of closely spaced 
charges out of Debye-H ü ckel theory and regarded these as distinct 
chemical entities to be considered alongside the free charges. In 
 Figure 4,  we present the energy  u ( T ) of the system found by inte-
grating the speci# c heat. ! e result of Debye-H ü ckel    +    Bjerrum 
theory, as described in the Methods, is shown to give an excellent 
description of the low-temperature data, without the addition of any 
new # tting parameters. ! is result is not in contradiction with the 
# t of  Figure 3 , as the modi# ed Debye-H ü ckel theory described in 
the Methods, including the short-distance contribution of charge 
interactions, naturally incorporates the e$ ect of Bjerrum pairs, to an 
excellent approximation. ! e monopoles of Dy 2 Ge 2 O 7  are found to 
be about 50 %  dimerized at all measured temperatures.    

 Discussion 
 We may put these results in the context of the corresponding states 
diagram (essentially the phase diagram of  T  *  versus  x ) for the 
restricted primitive model electrolyte, a basic model of electrolyte 
behaviour. In the case of a continuum electrolyte, there are three 
signi# cant boundaries on this diagram marking, respectively, the 
onset of signi# cant dimerization, the conductance minimum, and 
phase separation (see, for example,  Fig. 1  in ref.   25). In Dy 2 Ge 2 O 7,  
we have reached the # rst of these boundaries for spin ice. To reach 
the other boundaries would require us to # nd a spin ice material 
with |  ν  | ! 3.3   K. However, a lattice Coulomb gas-like spin ice may 
show yet more complex phase behaviour in this limit, including 
charge-ordered phases 26,27 . In fact, the ultimate limit of tuning the 
monopole chemical potential to   ν   ! 3   K has already been identi-
# ed through numerical studies on the dipolar spin ice model 14 . 
In monopole language, this structure consists of the ordering of 

 ‘ double charges ’      ±    2 Q  to give a magnetic structure with  ‘ 4 spins 
in / 4 spins out ’  on alternate tetrahedra. ! is structure (also known 
as the FeF 3  structure) becomes stable at   ν      =    2.4   K,  J  e$      =    0.2   K. In the 
unchartered region between   ν    ≈  3.3   K and   ν    ≈  2.4   K, we would expect 
to # nd a great deal of interesting physics associated with increas-
ing monopole correlations and the gradual appearance of double 
charges. Our results illustrate that this region should be accessible 
to experiment, as we have shown how high-pressure methods a$ ord 
the opportunity of dramatically altering the chemical potential of 
magnetic monopoles in spin ice, to the degree where new aspects of 
monopole physics can be revealed.   

 Methods  
  Sample preparation and characterization   .   Batches of up to 50   mg of the pyro-
chlore dysprosium germanate, Dy 2 Ge 2 O 7 , were made in a Walker-type, multi-
anvil press. Stoichiometric amounts of Dy 2 O 3  and GeO 2  were ground thoroughly, 
wrapped in gold foil, compressed to 7   GPa and heated to 1,000    ° C. Rietveld 
re# nement of the X-ray powder di$ raction pattern con# rmed the face-centred 
cubic space group, (Fd-3m, No. 227) and the absence of any tetragonal pyroger-
manate. ! e room temperature lattice parameter was determined to be 9.9290(5)    Å , 
( Fig. 2  (inset)). Temperature- and # eld-dependent magnetization measurements 
con# rmed a rare earth magnetic moment of  ~ 10     µ   B  and a Curie – Weiss constant of 
0.0   K. ! e heat capacity was measured using a thermal relaxation method between 
0.34 and 25   K. ! e lattice contribution was subtracted from the measured speci# c 
heat to reveal the magnetic contribution. ! e energy  u ( T ) was found by numerical 
integration of the measured speci# c heat.   

  Heat capacity analysis   .   To calculate the speci# c heat, the energy per diamond lat-
tice site,  u , was written  u     =    |  ν  | x  , where  x  is the number of monopoles per lattice site: 
 x k T k TB B= − + − −exp( | |)/ [ exp( | |)/ ]n n n nDH DH1 1  . Here   ν   DH  is the standard 
Debye-H ü ckel correction to the chemical potential (related to the electrochemical 
activity coe%  cient): | ν  DH | /  k   B   T     =     l   T   / ( l   D      +     a ), where  l   T      =      µ   0  Q  2  / (8  π k   B   T ), is the Bjerrum 
length,  l Q x k TVD B d= −[ /( )] /m0

2 1 2   is the Debye length, and  V   d   is the volume per 
diamond lattice site (for a detailed discussion of these quantities, see ref.   23). Using 
these equations  x  and  l   D   were determined self consistently, and then the speci# c 
heat was found by di$ erentiating  u . 

 To incorporate charge dimers, we considered them as near-neighbour pairs, 
which is appropriate on a lattice 26 . ! eir chemical potential is   ν    d      =    2|  ν  | −    µ   0  Q  2  / (4  π a ), 
giving the number of pairs per diamond lattice site:  x   B   ≈ 2exp    −    |  ν    d  | / ( k   B   T ). ! e 
Debye-H ü ckel correction was modi# ed to avoid double counting these pairs as 
follows:   ν    DH   / ( k   B   T ) →  l   T   / ( l   D      +    2 a ). ! e energy was then calculated as:  u     =    |  ν    d  | x   B      +    |  ν  | x , 
which was compared with the measured  u ( T ). 

 ! ese methods have been comprehensively tested and shown to provide 
a robust analysis of speci# c heat data on spin ice materials. ! ey were used to 
estimate the curves in  Figures 1, 3 and 4 . In  Figure 1,  the chemical potentials 
used are: 3.35   K (DyGe), 4.35   K (DyTi), 5.5   K (HoGe) and 5.8   K (HoTi) in an 
obvious notation; for the Ho materials, these are only rough estimates, owing to 
the di%  culty of accurately isolating the electronic speci# c heat from the nuclear 
component 9 .                           
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  Figure 4    |         The experimental energy  u ( T ) of Dy 2 Ge 2 O 7  and the signifi cance 
of the Bjerrum correction. Main fi gure: red circles are experimental data 
points. Black line is the predicted energy incorporating both free monopoles 
and (    ±    ) monopole dimers, using the chemical potential estimated from the 
data of  Figure 3 . Black dashed line is the Debye-H ü ckel theory with a short 
range cutoff of two lattice spacings, which thus neglects charge dimers. 
However, our modifi ed Debye-H ü ckel method fi ts the data just as well as 
Bjerrum ’ s method, as it accounts for the dimers to a good approximation 
( Fig. 3 ). Inset: upper curve to lower curve are the theoretical energy 
for Dy 2 Ge 2 O 7  (with and without Bjerrum pairs) and Dy 2 Ti 2 O 7  (with and 
without Bjerrum pairs), respectively. The Bjerrum correction is much more 
important for Dy 2 Ge 2 O 7  than for Dy 2 Ti 2 O 7 .  

Debye-Hückel theory for weak electrolyte, e.g.
2H2O = [H3O+OH−] = H3O+ + OH−
monopole charge = ±µ/(

√
3/2a), aDTO ∼ 10.1 Å, aDGO ∼ 9.9 Å

Jeff ,DTO = 1.1 K, ν = 4.25 K; Jeff ,DGO = 0.6 K, ν = 3.35 K
Bramwell et. al. Nature (2009); Onsager J. Chem. Phys. (1934); Zhou et al., Nat. Comm. (2011); Morris et al.,

Science (2009); Castelnovo et al. PRB (2011)



Spin ice: summary

+ Deconfined fractional quasiparticles (in 3d)

+ Emergent monopole character (and Coulomb phase)

+ “Magnetolyte”/electrolyte duality

+ Effective theory transforms questions → new ideas possible, care
required in investigations



Quantum spin ice: “Maxwell phase” → magnetic photons

Quantum spin ice
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Water ice comprises a loosely-packed lattice of water molecules, held together by hydrogen bonds.
This structure hides a puzzle — chemical bonding alone does not select a unique orientation of the
water molecules. As a result each water molecule has a finite ground state entropy s0 ≈ kB log(3/2),
in violation of the laws of thermodynamics. The same degeneracy, and the same contradiction,
arises in problems of frustrated charge order on the pyrochlore lattice, and in the family of rare-
earth magnets collectively known as spin ice. In this paper we use zero-temperature quantum
Monte Carlo simulations to explore how quantum mechanical tunneling between different spin- or
charge-ice configurations can lead to a resolution of this issue, by stabilizing a unique “quantum
ice” ground state. This quantum ice state has excitations described by the Maxwell action of 3+1-
dimensional quantum electrodynamics, and so retains the algebraic correlations and deconfined
fractional excitations associated with classical ice states.

PACS numbers: 74.20.Mn, 11.15.Ha, 71.10.Hf, 75.10.Jm

Ice is one of the strangest substances known to man.
In the common forms of water ice, protons occupy the
space between tetrahedrally coordinated oxygen ions,
with each oxygen obeying the “ice rule” constraint of
forming two long and two short bonds with a neighboring
proton [1, 2]. It was quickly realised that these ice rules
did not select a single, unique proton configuration [1],
but rather a vast manifold of classical ground states, with
an entropy per water molecule of s0 ≈ kB log(3/2) [2].
This prediction proved to be in good agreement with
measurements of entropy at low temperatures [3], but
stands in clear violation of the laws of thermodynamics
— at zero temperature water ice must be described by a
single, unique, ground state wave function.

The same “ice” rules, and the same extensive ground
state degeneracy, arise in (i) problems of frustrated
charge order on the pyrochlore lattice [4]; (ii) proton-
bonded ferroelectrics [5]; (iii) statistical descriptions of
polymer melts [6]; and (iv) a family of rare-earth mag-
nets collectively known as “spin-ice” [7]. In each case,
the ice rules have non-trivial consequences for the prop-
erties of the system, notably an algebraic decay of cor-
relations [5, 8] and excitations with “fractional” charac-
ter [1, 6, 9, 10]. These exotic features of the ice state
have been extremely well characterized in spin ice, where
the algebraic decay of correlation functions is visible as
“pinch points” in the magnetic structure factor [11], and
the fractional excitations have the character of magnetic
monopoles [12–15].

All of these systems beg the obvious question — how
is the degeneracy of the ice manifold lifted at zero tem-
perature ? The simplest way for an ice to recover a
unique ground state at zero temperature is for it to or-
der. This is exactly what happens in KOH-doped water
ice, where the protons order below 70K [16]. However in

FIG. 1: (Color online) Quantum mechanics enters ice physics
through the tunnelling of the system from one ice configuration
to another. The leading tunnelling matrix element for spin ice is
the reversal of a set of Ising spins with closed circulation on 6-link
hexagonal plaquette.

many spin-ice materials, no order is observed [7]. This
raises the intriguing possibility that there might exist a
zero temperature “quantum ice” state, in which a single
quantum mechanical ground state is formed through the
coherent superposition of an exponentially large number
of classical ice configurations. Such a state would have
a vanishing entropy at zero temperature, and so satisfy
the laws of thermodynamics, without sacrificing the al-
gebraic correlations and fractional excitations associated
with the degeneracy of the ice states.

The best systems in which to look for a quantum ice
are those which are able to tunnel from one ice configura-
tion to another on a time scale which is small compared
with thermal fluctuations. In water ice, in the absence of
mobile ionic defects [17], this tunnelling occurs through
the collective hopping of protons on a 6-link loop. In spin
ice it is the cyclic exchange of Ising spins on a hexago-
nal plaquette, illustrated in Fig. 1. In both cases the
ice rules can be written as a compact lattice U(1)-gauge
theory in which the displacement of protons — or orien-
tation of magnetic moments — are associated with a fic-
titious magnetic field B = ∇ ×A, in the Coulomb gauge

∇ · B(r) = 0⇒ ∇× A(r)

⇒ E(r) = −∂A(r)
∂t

Hermele et al., PRB (2004); Shannon et al., PRL (2012); Benton et al., PRB (2012)

Rep. Prog. Phys. 77 (2014) 056501 Review Article

Figure 3. Schematic of the spectrum of excitations in quantum spin
ice including the approximate energy scales and different naming
conventions.

phases, which have two polarizations because one direction
is fixed by the broken symmetry, the fact of having two
polarizations of photon excitations, whether fundamental or
emergent, is enforced by gauge invariance. In this section, we
shall see in a little more detail how magnetic interactions may
give rise to a variant of ordinary quantum electrodynamics.
We then describe various properties of these exotic phases
and review some of the ways in which they might be probed
experimentally in real quantum magnets. Next, we consider
the naturalness of quantum spin ice models and discuss, from a
very general perspective, the prospects of seeing quantum spin
liquids of this type in real materials. We conclude with a short
section (section 3.6) mentioning other possible condensed
matter realizations of U(1) liquids as well as putting quantum
spin ice into the broader context of understanding quantum
spin liquid phases.

3.1. From a spin model to loops

We begin by returning to classical spin ice because it is, in
some sense to be made more precise later, the precursor state
to the quantum spin liquid state of quantum spin ice systems.
Also, it will give us a classical example in which a U(1) gauge
redundancy appears, or really emerges, at low energies in a
magnet. The key to making a spin ice is to frustrate an Ising
model by putting it on a pyrochlore lattice (see figure 2). As
discussed earlier in section 2.1, in real magnets, the Ising spins
interact in spin space as though they were pointing along the
local 〈1 1 1〉 directions. The interactions in a classical nearest-
neighbour spin ice (CSI) model are described by the same
Hamiltonian as in equation (1) that we rewrite here:

HCSI = J‖
∑

〈ij〉
Sz

i S
z
j . (3)

To emphasize something we have already mentioned: this
classical Hamiltonian has a hugely degenerate ground state

composed of spin configurations fulfilling the ‘ice rule’ of two
spins pointing in and two pointing out of each tetrahedron as
illustrated in figure 2 and the top panel of figure 6. We denote
the Hilbert space of ice states as I. The spectrum of states
has a gap of 4J‖ to flipped spin defects. The ice rule can
be formulated as

∑
a Sa · ẑa = 0 (where the sum runs over

all the sublattice sites a of a tetrahedron) for each tetrahedral
element of the pyrochlore lattice. This condition is a zero
divergence condition on a lattice [34], which may be coarse-
grained to ∇ ·B = 0 where the ‘magnetic field’ B is a coarse-
grained analogue of the spin field Sa on the lattice. Since any
vector field can be decomposed into the sum of two fields with,
respectively, zero divergence and zero curl, in order to obtain
thermodynamic quantities within the restricted (∇ · B = 0)
manifold of spin ice states, one must average solely over the
circulation of B. In dramatic contrast to conventional long-
range ordered magnets at low energies, in spin ices, this coarse-
grained circulation is unconstrained and runs over a number of
states that scales as exp(αV ) in the volumeV of the system. We
can look at the divergence-free constraint as an emergent gauge
invariance, since one may introduce a vector potential A such
that B = ∇ × A and could carry out gauge transformations
on A that would leave the divergence-free condition invariant.
At finite but low temperatures, the divergence-free condition
is weakly violated by the thermal excitation of spin flip defects
(i.e. the ‘monopoles’ of the classical dipolar spin ice). As
the electrostatic analogy suggests, these defects behave like
sources of B and, at temperatures where such effective charges
are dilute, spin ice should behave much like a dilute plasma
described in the grand canonical ensemble [36–38]. This
physics becomes richer still when the underlying microscopic
magnetic moments, µa ∝ Sa , interact through a long-range
dipolar coupling—hence the review of dipolar spin ices in
section 2.1. In particular, as discussed in section 2.1, the
dipolar interaction about the spin ice background fractionalizes
into an energetic Coulomb interaction between defects in a
background of tetrahedra satisfying the spin ice rule [31].

The gauge invariance of classical spin ice turns out to be
crucial to the quantum case to which we now turn. We now
allow for the presence of (perturbative) ‘transverse’ nearest-
neighbour exchange couplings in addition to the ‘longitudinal’
(Ising) exchange part defined by equation (3). Our only
requirement is that the transverse couplings should have a
characteristic energy scaleJ⊥ ( J‖ so that there is little mixing
of the ice rule states with canted spin states away from the
local [1 1 1] Ising direction. We shall discuss in section 4.1 the
most general nearest-neighbour symmetry-allowed anisotropic
Hamiltonian on the pyrochlore lattice that does not commute
with HCSI and thus causes quantum dynamics. For now,
we consider a minimal spin model that contains quantum
dynamics within a spin ice state and which is a sort of local
XXZ model with transverse coupling J⊥.

HQSI ≡ HCSI + H⊥ = HCSI − J⊥
∑

〈ij〉
(S+

i S−
j + S−

i S+
j ). (4)

We shall comment, in section 3.5, on the conditions under
which real materials may exhibit such a J⊥ ( J‖ separation
of energy scales.

7

FIG. 13: (Color online). Ghostly magnetic “photon” excitation as it might appear in an inelastic neutron scattering experiment on a quantum
spin ice realising a quantum ice ground state, for a series of cuts along high symmetry directions in reciprocal space. The prediction of the
lattice field theoryH′

U(1) [Eq. (40)] for inelastic scattering by unpolarized neutrons, I(k,ω) [Eq. (91)] has been convoluted with a Gaussian of
variance 0.3 c a−1

0 to represent the finite energy resolution of the instrument. The intensity of scattering vanishes as ω → 0, and is strongest
at high energies. Energy is measured in units such that ! = 1, and the photon dispersion calculated forW = 0.

FIG. 14: (Color online). Prediction of the lattice field theory
H′

U(1) [Eq. (40)] for quasi-elastic neutron scattering performed us-
ing unpolarised neutrons, for comparison with Fig. 13. Results for
I(k) are taken from Eq. (92), and calculated for W = 0. The path
within the [h, h, l] plane used for plotting the photon dispersion in
Fig. 13 is shown using unbroken black arrows, with Brillouin zone
boundaries marked as dashed white lines.

Expanding for k ≈ 0, we find

∑

mn

ηmλ(k)η∗
λn(k)

(
êm · α̂

)(
ên · β̂

)
≈ 1

3

for α = β = y, z and zero otherwise. It follows that

Syy
spin(k ≈ 0, ω ≈ 0)

= Szz
spin(k ≈ 0, ω ≈ 0)

∝ ω(k) δ(ω − ω(k)). (105)

Therefore at low energies, in the first Brillouin zone, inelas-
tic neutron scattering experiments will resolve the magnetic
photon excitation as a ghostly, linearly dispersing peak, with
intensity vanishing as I ∝ ω(k), as noted in 58. However
at higher energies and in other Brillouin zones, the momen-
tum dependence of ηmλ(k)η∗

λn(k) in Eq. (104) will lead to a
significant variation in the intensity of the signal at fixed ω.
This behaviour is illustrated in Fig. 13, where we have plotted
the intensity of scattering I(k, ω) [Eq. (91)] for an experi-
ment performed using unpolarised neutrons. The correspond-
ing quasi elastic scattering, and the path within the [h, h, l]
plane, are shown in Fig. (14).
The phenomenology of this photon excitations stands

in stark contrast to conventional antiferromagnets, whose
linearly-dispersing spin-wave excitations have the greatest in-
tensity approaching the zero-energy magnetic Bragg peak
associated with magnetic order. The difference between
these two problems stems from the fact that the photon is
a quantised excitation of A, while neutron scattering mea-
sures correlations of B. The lattice curl needed to relate
one to the other introduces additional factors of ζλ(k) in
Sαβ

spin(k, ω) [Eq. (87)], which leads to the suppression of spec-
tral weight at low energies. It is interesting to note that a very
similar behaviour is found in theoretical treatments of quan-
tum spin nematics, where spin correlations are controlled by
a time derivative of the underlying order parameter65,66.

Benton et al., PRB (2012); Gingras & McClarty Rep. Prog. Phys. (2014)



Quantum spin ice: candidate materials

H =
∑
〈ij〉{JzzSz

i Sz
j − J±(S+

i S−j + S+
i S−j ) +

J±±[γijS+
i S+

j + γ∗ijS−i S−j ] + Jz±[Sz
i (ζijS+

j + ζ∗ijS−j ) + i ↔ j]}

Pr2Zr2O7

Supplementary Figure S3). The low T limit, x0, indicates a quasi-
static monopole density of 1.2%. This can be compared with
the B1% concentration of Zr on Pr sites determined by single
crystal synchrotron X-ray diffraction (Supplementary Figure S2

and Supplementary Note 1). The fitting function,
1=xice¼ 1=x0þA= expðDw=TÞ, (black solid line, Fig. 3c)
describes the data well with the activation energy fixed at the
value of Dw¼ 1.6 K extracted from AC-w(T) data (Fig. 1e, inset).
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Figure 3 | Spin ice correlations and quantum dynamics probed with elastic and inelastic neutron scattering. (a) Inelastic Q-map with energy transfer of
0.25 meV obtained after subtracting the corresponding data at 15 K as background. The broad diffuse scattering pattern carries the symmetry of the crystal
but cannot be associated with phonon scattering, which is concentrated around strong nuclear Bragg peaks at low energies. Instead we associate it with
inelastic magnetic scattering. The fact that the scattering is wave vector dependent further links it to inter-site quantum spin dynamics. (b) Elastic Q-map

with pinch points at (002), (111), and (111). By subtracting 22 K data from 0.1 K data to cancel elastic nuclear scattering processes at Bragg peaks, we obtain
quasi-static spin correlations on the time scale of t¼ !h/dE¼ 2 ps. The black ellipses at (002) in (a) and (b) indicate the full width at half maximum
instrumental resolution. (c) Temperature-dependence of the spin ice correlation length xice (left) and the relaxation rate G (right). The black solid line denotes

1=xice¼ 1=x0þA= expðDw=TÞ with the activation energy fixed at the value of Dw¼ 1.62(3) K. The red solid line shows GðTÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG0Þ2þðCkBTÞ2

q
, where

C¼ 1.4(2). The black horizontal dashed line indicates the mean distance between 1% of the Pr sites, which according to synchrotron X-ray analysis are
occupied by Zr (Supplementary Figure S2 and Supplementary Note 1). (d) Inelastic neutron scattering (INS) spectra at Q¼ (003) and T¼0.1 K (solid circle)
and 2.0 K (open circle) after subtraction of INS data obtained at the same Q but at the elevated temperature of 15 K. A correction to the monitor rate was
applied to account for order contamination in the unfiltered incident beam. The fitting curve and the corresponding background resulting from subtraction of
magnetic scattering at T¼ 15 K to derive G are shown by red solid and blue dashed curves, respectively. The details of the analysis are described in
Supplementary Note 3. The error bars reflect one s.d. counting statistics. When error bars are not visible they are smaller than the symbol size.
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Yb2Ti2O7

range [19]. Furthermore, and most importantly, our ex-
tracted exchange parameters correctly reproduce relative
intensities as well as the shape of the spin wave dispersion
for each of the five directions. Agreement is excellent for
H ¼ 2 T, showing that these parameters produce a robust
description of the field-induced ferromagnetic state. We
note, however, that there is a significant quantitative dis-
agreement with the exchange parameters quoted in
Refs. [9,10] (see Appendix H).

Implications.—The excellent agreement with spin wave
theory for fieldsH " 2 T clearly indicates that the high field

state is accurately modeled semiclassically, and is smoothly
connected to the fully polarized limit. Theoretically, the
ground state in this regime breaks no symmetries, and sup-
ports a ferromagnetic polarization along the axis of the
applied field (for the h110i field used in the experiment).
However, the semiclassical analysis clearly and dramatically
fails at small fields, where the measurements show no signs
of spontaneous long-range order [18]. The classical zero-
field ground state for our Hamiltonian parameters has a large
spontaneous polarization along the h100i axis. Extension of
this analysis to a T > 0mean-field theory wrongly predicts a

FIG. 1. The measured SðQ; !Þ at T ¼ 30 mK, sliced along various directions in the HHL plane, for both H ¼ 5 T (first row) and
H ¼ 2 T (third row). The second and fourth rows show the calculated spectrum for these two field strengths, based on an anisotropic
exchange model with five free parameters (see text) that were extracted by fitting to the 5 T data set. For a realistic comparison to the
data, the calculated SðQ; !Þ is convoluted with a Gaussian of full-width 0.09 meV. Both the 2 T and 5 T data sets, composed of spin
wave dispersions along five different directions, are described extremely well by the same parameters. (Note that r.l.u. stands for
reciprocal lattice units.)

FIG. 2. Representations of the HHL scattering plane, showing the FCC Brillouin-zone boundaries and the corresponding zone centers
(labeled in terms of the conventional simple-cubic unit cell). Blue lines indicate the directions of the five different cuts shown in Fig. 1.

QUANTUM EXCITATIONS IN QUANTUM SPIN ICE PHYS. REV. X 1, 021002 (2011)
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Figure 2.
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Quantum spin ice: summary

+ Quantum generalization of spin ice

+ Spinons and photons - but no photons yet observed

+ General purpose Hamiltonian for rare earth pyrochlores where
dipolar interaction not too large



Tb2Ti2O7: the original quantum spin ice
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The CEF anisotropy of Tb3þ (J ¼ 6, gJ ¼ 3=2) in
Tb2Ti2O7 is considerably smaller than that of Ho3þ in
Ho2Ti2O7 (see Fig. 2). At room temperature, Tb2Ti2O7 is
practically isotropic [9,12] due to the relatively large num-
ber of populated CEF levels [7,8]. Decreasing the tempera-
ture, it evolves progressively into an Ising type with a ratio
of ellipsoid axes of the order of 10.

A CEF-only calculation using the parameters from
Ref. [8] accounts practically for the !k data, and lies
somewhat above the !? data. Introducing an anisotropic
! tensor improves the agreement, especially for !?, with
the AFM values: "k ¼ #0:05ð2Þ T=#B and "? ¼
#1:0ð2Þ T=#B. We have checked that this ! tensor is
coherent with the isotropic effective value " ¼
#0:33 T=#B derived in Ref. [8] from the analysis of the
high temperature powder susceptibility. For !?ðTÞ, the
self-consistent calculation does not converge below about
5 K, which is the ‘‘ordering’’ temperature of the model; this
is why there are no calculated points for !? below 5 K in
Fig. 2. Both components of the ! tensor, which corre-
sponds to an effective (exchangeþ dipole) low tempera-
ture interaction, are found to be of the AFM type, in line
with the position of Tb2Ti2O7 in the phase diagram of
Ref. [31]. Our own previous estimation [8] tentatively
located Tb2Ti2O7 in the spin-ice side of this phase dia-
gram, but it was based on the high temperature isotropic
determination of " and could not take into account the
anisotropy of the ! tensor found in the present work.

As seen from Fig. 3, the anisotropy of Er3þ (J ¼ 15=2,
gJ ¼ 6=5) in Er2Ti2O7 is rather weak, and a spherical
shape for the magnetic ellipsoids is recovered above
100 K. At low temperature, !? > !k, in agreement with
the planar magnetic ordering below 1.2 K found in Ref. [3].
The CEF parameters for Er2Ti2O7, rescaled from those in
Ho2Ti2O7, were refined so as to reproduce the energies of
the two lowest CEF excited doublets [3], at 6.3 and

7.3 meV, as well as the transverse component of the g
tensor of the ground Kramers doublet, which must match
the in-plane saturated moment. The CEF parameters listed
in the caption of Fig. 3 meet these requirements, with gk ¼
2:6 and g? ¼ 6:8 for the ground doublet, the latter value
yielding msat ¼ 1

2g? #B ¼ 3:4#B, close to the measured
value 3#B. The CEF-only calculation of the susceptibili-
ties shows a good first order agreement for !kðTÞ, and
introduction of the effective exchange improves greatly
the agreement for !?ðTÞ. We find the ! tensor in
Er2Ti2O7 is also anisotropic and of the AFM type: "? ¼
#0:45ð5Þ T=#B and "k ¼ #0:15ð1Þ T=#B. The in-plane
effective exchange is thus stronger than its component
along the ternary axis, which reinforces the XY character
determined by the CEF anisotropy.
Figure 4 shows the temperature dependence of !k and

!? for Yb3þ (J ¼ 7=2, gJ ¼ 8=7) in the planar anisotropy
pyrochlore Yb2Ti2O7. Its magnetic ellipsoids are disk-
shaped, like in Er2Ti2O7, but a strong anisotropy persists
up to much higher temperature because the excited
Kramers doublets lie much higher in energy (700–
1000 K) [13]. In order to calculate !kðTÞ and !?ðTÞ, we
used CEF parameters rescaled from those in Ho2Ti2O7.
The chosen set of parameters must also reproduce the
thermal variation of the 4f quadrupolar moment Q4fðTÞ /
h3J2z # JðJ þ 1ÞiT measured by the $-$ perturbed angular
correlations technique [13]. The Bm

n coefficients listed in
the caption of Fig. 4 meet these requirements and yield a
rather good agreement with the experimental data for
!?ðTÞ, implying "? ’ 0. For !kðTÞ, a ferromagnetic value
"k ¼ 2:5ð5Þ T=#B is needed to reproduce the data. We
checked that the powder susceptibility calculated using
this ! tensor agrees with experiment, i.e., that it leads to
an almost vanishing paramagnetic Curie temperature be-
low 20 K [13]. The present set of parameters, which differs
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FIG. 3 (color online). Er2Ti2O7: Susceptibility components !k
and !? versus T. The following CEF parameters (in K) were
used (see text): B0

2 ¼ 616, B0
4 ¼ 2850, B3

4 ¼ 795, B0
6 ¼ 858,

B3
6 ¼ #493, and B6

6 ¼ 980. Dashed lines, CEF-only calculation;
solid lines, calculation including effective exchange: "k ¼
#0:15 T=#B, "? ¼ #0:45 T=#B.
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FIG. 2 (color online). Tb2Ti2O7: Susceptibility components !k
and !? versus T. The following CEF parameters (in K) were
used [8]: B0

2 ¼ 712, B0
4 ¼ 3400, B3

4 ¼ 1200, B0
6 ¼ 1130, B3

6 ¼
#700, and B6

6 ¼ 1140. Dashed lines, CEF-only calculation;
solid lines, calculation including effective exchange: "k ¼
#0:05 T=#B, "? ¼ #1 T=#B.
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Relatively high counting statistic, energy-integrated, line

scans in reciprocal space were performed along the three

high-symmetry directions at both 4.2 and 100 K. Their dif-

ference, again multiplied by a magnetic form factor appro-

priate to Tb3!, is plotted in the three panels of Fig. 9. The

axis and labels for these S(Q) data are on the left side of the

figure. Also plotted on the same figure is the dispersion re-

lation for the lowest-energy band of magnetic excitations at

4.2 K, as determined from constant-Q scans of the form

shown in Fig. 8. The axis and labels appropriate to these

dispersion relations are on the right side of Fig. 9. In all three

symmetry directions, different E(Q) dependencies are ob-

served, mirroring the anisotropic nature of S(Q). That is for

FIG. 6. !Color" Upper panel: A color contour plot of the mea-
sured diffuse scattering in the single-crystal sample within the

(h ,h ,l) plane at 9 K is shown. A high-temperature (T"100 K)
background has been subtracted, so as to isolate the magnetic cor-

relations. Bottom panel: The form of S(Q) calculated on the basis

of near-neighbor correlations alone on the pyrochlore lattice #Eq.
!3"$ is shown. This form differs from Eq. !2", which assumes iso-
tropic near-neighbor spin correlations, and well describes the check-

erboard pattern of magnetic scattering within the !h,h,l" plane in
reciprocal space, as observed experimentally !see upper panel". The
intensity scale in the calculation !lower panel" has been chosen to
match that of the experiment !upper panel".

FIG. 7. The temperature dependence of the diffuse scattering

from the single-crystal sample at !0,0,2.25" is shown. Note that it
develops strong growth with decreasing temperature below 20 K,

but continues to evolve with temperature at temperatures as high as

100 K.

FIG. 8. Constant Q scans from the single-crystal sample, reveal-

ing the temperature and Q dependence of the low-lying magnetic

excitation entered at %0.38 THz, is shown. The top panel shows
how this mode softens with decreasing temperature close to Qmax .

The Q dependence at 4.3 K, for wave vectors along (0,0,l), is

shown in the bottom panel. The lines are a guide to the eye.
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Figure 4. The long range ordered q = (0, 0, 2π/a) dipolar spin ice ground state. Projected down
the z axis (a), the four tetrahedra making up the cubic unit cell appear as dark grey squares. The
light grey square in the middle does not represent a tetrahedron, but its diagonally opposing spins
are in the same lattice plane. The component of each spin parallel to the z axis is indicated by + and
− signs. In perspective (b), the four tetrahedra of the unit cell are numbered to enable comparison
with (a).

Figure 5. The phase diagram for the dipolar spin ice model in zero applied magnetic field. The
antiferromagnetic ground state is an all-spins-in or all-spins-out configuration for each tetrahedron.
The spin ice configuration, which includes the q = (0, 0, 2π/a) ground state, is a two-spins-in–
two-spins-out configuration for each tetrahedron. The region encompassed between the quasi-
vertical dotted curves displays hysteresis in the long range ordered state selected (q = 0 versus
q = (0, 0, 2π/a)) as Jnn/Dnn is varied at fixed temperature T .

recover all of Pauling’s missing entropy in the model. The ordered state that is found in the loop
MC simulations [56] corresponds to the ordered state predicted by mean field theory [52, 53].
In other words, the dipolar spin ice model possesses on its own, without invoking energetic
perturbations and/or thermal and quantum fluctuations, a unique (up to trivial global symmetry
relations) classical ground state with zero entropy in the thermodynamic limit.

Pauling’s entropy can also be recovered in spin ices exposed to an external magnetic
field. In particular, for fields of sufficient magnitude aligned along different crystal axes,
distinct ground state ordering patterns can be realized which destroy the macroscopic spin
ice degeneracy through various mechanisms. Using MC simulations and direct Ewald energy
calculations, we are able to investigate the behaviour of the dipolar spin ice model in an
external magnetic field. With application of a large field along three different crystal symmetry

The bare Hamiltonian of TTO is taken [23] as H !
Hcf "He "Hd. Hcf is the single-ion CF Hamiltonian
[13], He ! J

P
hi;jiJi # Jj is the NN exchange interaction

and Hd ! DR3
nn
P

$i>j%&Ji # Jj ' 3$Ji # r̂ij%$Jj # r̂ij%(jRijj'3

is the dipole-dipole interaction. Rij ) Rj ' Ri ! jRijjr̂ij,
where Ri is the position of atom i with total angular
momentum Ji. J is the NN exchange coupling with the
convention here that J > 0 is antiferromagnetic. D !
$!0=4"%$g!B%2=R3

nn is the dipolar coupling, and g !
3=2 is the Landé factor for Tb3". Rnn ! 3:59 !A is the
NN distance, giving D * 0:0315 K [13]. To introduce
the single-ion wave functions which become admixed by
the spin interactions, Hint ! He "Hd, we focus on the
essential part of Hcf : its doublet ground states, j"+

0 i, and
its lowest excited doublet states, j"+

e i, at an energy # !
18:7 K above j"+

0 i. The excited states above # do not lead
to qualitatively different new physics. Tb3" has orbital
angular momentum L ! 3, spin S ! 3, and total angular
momentum J ! L" S with J ! 6. We express j"+

0 i and
j"+

e i in terms of the eigenstates jJ ! 6; mJi of Jz within
the fixed J ! 6 manifold. Exact diagonalization of Hcf us-
ing the CF parameters taken from Ref. [21] for HTO, but
rescaled for TTO, gives: j"+

0 i ! #4j+ 4i+ #5j, 5i"
#2j, 2i+ #1j+ 1i and j"+

e i!+$5j+5i"$4j,4i"
$2j+2i+$1j,1i [25].

Single-tetrahedron model—exact diagonalization.—
Since the spin-spin correlations in TTO never exceed a
length scale much beyond a single tetrahedron [15–17], we
consider a simple model of noninteracting tetrahedra for
TTO. Such approximation of independent tetrahedra ex-
plains some properties of the classical Heisenberg pyro-
chlore antiferromagnet model [26] and, by incorporating
transverse spin fluctuations [24,27], captures rough fea-
tures of the TTO neutron scattering pattern [15]. Our aim in
using this approximation is to expose the generic effects of
virtual CF excitations on Heff and the consequential phys-
ics at play near the Néel to spin ice boundary. We ignore
the long-range nature of the dipole-dipole interactions in
Hd since it is the NN contribution of these interactions that
predominantly controls the transition from the Néel phase
to the spin ice state [28,29]. Henceforth, we set D !
0:0315 K, work with fixed f#m;$mg [25], and treat J
and # as independent tunable parameters.

Diagonalizing Hint for a single tetrahedron within the
space of the 44 ! 256 CF states, we obtain the zero tem-
perature J ' # phase diagram shown in Fig. 1. For the
classical Ising limit (1=# ! 0), we recover the transition
between ‘‘Néel order’’ (all-in/all-out, twofold degenerate,
J > 5D) and a spin ice manifold (two-in/two-out, sixfold
degenerate, J < 5D). Such a classical Ising model [6,13]
places TTO above the classical J ! 5D boundary [6,30]
(horizontal dashed line), i.e., in the Néel state [13].
However, for 1=#> 0, quantum effects, due to the admix-
ing of j"+

0 i with j"+
e i via Hint, become increasingly

important, as shown by the renormalized J c$1=#% bound-
ary in Fig. 1 (filled circles). This boundary separates quan-

tum variants of the classical phases and TTO, with
J ! 0:167 K and # ! 18:7 K, is now deeply repositioned
in the singlet regime, i.e., is a quantum spin ice. The
quantum spin ice state for J < J c is a singlet predomi-
nently built from the symmetrized 6 two-in/two-out other-
wise degenerate classical spin ice states whose degeneracy
is lifted by quantum effects. The ground state also contains
a small (of order 1=#) spectral weight contribution from
the excited CF j"+

e i states. The manifold of 15 lowest
energy excited states consists of three triplets and three
doublets spanning an energy band %W * 0:5 K above the
ground state singlet. This energy band is further separated
by a gap of 16 K to the higher energy excited states.

Single-tetrahedron model—effective Hamiltonian.—To
shed light on the virtual CF excitation channels leading to
J c$1=#%, we construct an effective S ! 1

2 anisotropic
Hamiltonian, Heff . Using second order perturbation theory
[31] in 1=#, we have Heff ! PHP" PHRHP, with P !P

#j$0;#ih$0;#j and R ! P
$j$e;$i$E0 ' E$%'1h$e;$j,

where E0 ! h$0;#jHcfj$0;#i and E$ ! h$e;$jHcfj$e;$i.
Here fj$0;#ig are the 24 ! 16 states constructed as direct
products of the noninteracting single ion j"+

0 i CF doublet
ground states of Hcf . The j$e;$i are the remaining 44 '
16 ! 240 states. We recast Heff in the form of an effective
anisotropic S ! 1

2 spin Hamiltonian in the individual local
[111] spin &z

i basis [22]: Heff !
P

hi;ji;!;'J
!'
ij &!

i &
'
j , where

!, ', are spin component indices, &!
i are Pauli matrices,
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Main panel: The boundary J c$1=#% (filled circles) separates a
ground state singlet (J < J c) from a ground state doublet (J >
J c). The open circles show the same boundary, but as predicted
by exact diagonalization of Heff . Inset: neglecting transverse
terms in Heff (( ! 0), the filled squares show the renormalized
classical sextet-doublet boundary set by the condition
Jzzij $J ; 1=#% ! 0. The open squares show the incorrect sextet-
doublet boundary predicted when Jzzij for pair hi; ji in Heff is
obtained by ignoring contributions in PHRHP coming from
(intermediate) excited states j"+

e i that belong to the two other
Tb3" ions (k and l) on the tetrahedron.
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Tb2Ti2O7: Coulomb phase correlations
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Tb2Ti2O7: magnetoelastic excitations
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Tb2Ti2O7: summary

+ Power-law correlations - type of Coulomb phase

+ Hybridization of spin and lattice excitations

+ Source of fluctuations to melt expected order?

+ Neutrons for the study of spin correlations and excitations on the
meV energy scale and mK temperature scale



Spin ice: magnetic Coulomb liquid → susceptibility and relaxation at low

temperature

NATURE PHYSICS DOI: 10.1038/NPHYS1227 LETTERS
a

b

Figure 1 | Spin-ice structure and emergence of monopoles. a, The
magnetic ions (Ho3+ or Dy3+) lie on the sites of the pyrochlore lattice and
are constrained to the bonds of the dual diamond lattice (dashed lines).
Local topological excitations 3 in–1 out or 3 out–1 in correspond to magnetic
monopoles with positive (blue sphere) or negative (red sphere) charges
respectively. b, The diamond lattice provides the skeleton for the network
of Dirac strings with the position of the monopole restricted to the vertices.
The orientation of the Dirac strings shows the direction of the local field
lines in H.

anArrhenius law ⇤ =⇤0 exp(2 Jeff/kBT ), as shownby the red curve in
Fig. 2. The timescale ⇤0 is fixed by fitting to the experimental time
at 4 K with Jeff = 1.11K, the value estimated for Dy2Ti207 (ref. 7).
2 Jeff is the energy cost of a single, free topological defect in the
nearest-neighbour approximation and is half that for a single spin
flip. The calculation fits the data over the low-temperature part
of the quasi-plateau region, where one expects a significant defect
concentration without any double defects (4-in or 4-out), and gives
surprisingly good qualitative agreement at lower temperature, as
the concentration decreases. Although still in the tunnelling regime,
the plateau region corresponds to high temperature for the effective
Ising system. Good agreement here provides a stringent test and any

Temperature (K)

1

0 3 6 9 12 15 18

τ
(s

)

10¬4
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10¬1 10¬1
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0 1 2 3

Figure 2 | Relaxation timescales � in Dy2Ti2O7: experiment and
simulation. The experimental data (crosses) are from Snyder et al.3. The
Arrhenius law (red line) represents the free diffusion of topological defects
in the nearest-neighbour model. The relaxation timescale of the Dirac
string network driven by Metropolis dynamics of magnetic monopoles has
been obtained for fixed chemical potential (pink filled triangles) and with µ

varying slowly to match the defect concentration in dipolar spin ice (blue
filled circles). The temperature scale is fixed without any free parameters.
Inset: The same data shown in the low-temperature region.

theory not fitting must be discarded. The above expression clearly
does a good job, enabling us to equate ⇤0 with the microscopic
tunnelling time. This test therefore already provides very strong
evidence for the fractionalization ofmagnetic charge2 and the diffu-
sion of unconfined particles.However, this (or any other) Arrhenius
function ultimately fails, underestimating the timescale at very low
temperature: although it is possible to fit the data reasonably below
2K by a single exponential function by varying the barrier height,
simultaneous agreement along the plateau and at lower temperature
is impossible. The role of the missing Coulomb interaction is there-
fore clear: although non-confining, it must considerably increase
the relaxation timescale by modifying the defect concentration and
slowing downdiffusion through the creation of locally boundpairs.

We have tested this idea by directly simulating a Coulomb gas of
magnetically charged particles (monopoles), in the grand canonical
ensemble, occupying the sites of the diamond lattice. The magnetic
charge is taken as qi = ±q. In the grand canonical ensemble, the
chemical potential is an independent variable, of which the value in
the correspondingmagnetic experiment is unknown. In a first series
of simulations, we have estimated it numerically by calculating
the difference between the Coulomb energy gained by creating
a pair of neighbouring magnetic monopoles and that required
to produce a pair of topological defects in the dipolar spin-ice
model, with parameters taken from ref. 7, giving a configurationally
averaged estimate µ/kB = 8.92K. In a second series of simulations,
µ was taken as the value required to reproduce the same defect
concentration as in a simulation of dipolar spin ice at temperature
T . Here, µ varied only by 3%, with the same mean value as
in the first series, showing that our procedure is consistent. The
chemical potential used is thus not a free parameter. As the
Coulomb interaction is long-ranged, we treat a finite system
using the Ewald summation method20,21. The monopoles hop
between nearest-neighbour sites through the Metropolis Monte
Carlo algorithm, giving diffusive dynamics, but with a further local
constraint: in the spin model a 3 in–1 out topological defect can
move at low energy cost by flipping one of the 3-in spins, the
direction of the out-spin being barred by an energy barrier of
8 Jeff. An isolated monopole can therefore hop to only 3 out of
4 of its nearest-neighbour sites, dictated by an oriented network
of constrained trajectories similar to the ensemble of classical

NATURE PHYSICS | VOL 5 | APRIL 2009 | www.nature.com/naturephysics 259
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Dirac Strings and Magnetic Monopoles
in the Spin Ice Dy2Ti2O7
D. J. P. Morris,1* D. A. Tennant,1,2* S. A. Grigera,3,4* B. Klemke,1,2 C. Castelnovo,5 R. Moessner,6
C. Czternasty,1 M. Meissner,1 K. C. Rule,1 J.-U. Hoffmann,1 K. Kiefer,1 S. Gerischer,1
D. Slobinsky,3 R. S. Perry7

Sources of magnetic fields—magnetic monopoles—have so far proven elusive as elementary particles.
Condensed-matter physicists have recently proposed several scenarios of emergent quasiparticles
resembling monopoles. A particularly simple proposition pertains to spin ice on the highly frustrated
pyrochlore lattice. The spin-ice state is argued to be well described by networks of aligned dipoles
resembling solenoidal tubes—classical, and observable, versions of a Dirac string. Where these tubes end,
the resulting defects look like magnetic monopoles. We demonstrated, by diffuse neutron scattering, the
presence of such strings in the spin ice dysprosium titanate (Dy2Ti2O7). This is achieved by applying a
symmetry-breaking magnetic field with which we can manipulate the density and orientation of the
strings. In turn, heat capacity is described by a gas of magnetic monopoles interacting via a magnetic
Coulomb interaction.

Despite searching within the cosmic radi-
ation, particle colliders, and lunar dust,
free magnetic monopoles have not been

observed (1, 2). This is particularly disappointing
given that unification theories have predicted
their existence. Dirac’s original vision for mono-
poles involves a string singularity carrying mag-
netic flux, the ends of which act as north and
south monopoles. We report the observation of
analogous strings and magnetic monopoles in
spin ice, magnetic compound Dy2Ti2O7 with
a pyrochlore lattice structure. This is a real-
ization of magnetic fractionalization in three
dimensions, a separation of north and south
monopoles.

Dysprosium titanate contains magnetic 162Dy
ions in the highly frustrated pyrochlore lattice
that have ferromagnetic exchange and dipolar
interactions between the spins. The pyrochlore
lattice is a three-dimensional (3D) structure built
from corner-sharing tetrahedra (Fig. 1A). Spin ice is
realized on this lattice when spins placed on the
vertices are constrained to point radially into or out of
the tetrahedra and are coupled ferromagnetically—
or, as in the case of Dy2Ti2O7, through dipolar
coupling (3). This leads to the lowest-energy spin
configurations obeying the “ice rules” of two spins
pointing into, and two out of, each tetrahedron.
This is equivalent to the physics of the proton

arrangement in ice, where two protons sit close to
each oxygen and two far away—and indeed spin
ice exhibits the Pauling ice entropy S ≈ (R/2) ln(3/2)
per spin (4, 5), reflecting a huge low-energy den-
sity of states in zero magnetic field.

Each spin can be thought of as a small dipole
or solenoid channelingmagnetic flux into and out
of a tetrahedron. The ice rules are too weak to
impose magnetic long-range order, but they do
induce dipolar power-law correlations resulting
in characteristic pinch-point features in neutron
scattering (6–10).

A spin flip violates the ice rule in two
tetrahedra, at a cost of ~2 K per tetrahedron in
Dy2Ti2O7. It was proposed that to a good
approximation this can be viewed as the for-
mation of a pair of monopoles of opposite sign in
adjacent tetrahedra (11). These monopoles are
deconfined (Fig. 1A); they can separate and
move essentially independently. Thus, the equi-
librium defect density is determined not by the
cost of a spin flip but by the properties of the gas
of interacting monopoles. In Fig. 1B, we com-
pare themeasured heat capacity toDebye-Hückel
theory (12), which describes a gas of monopoles
with Coulomb interactions. This theory is appro-
priate to low temperatures, where the monopoles
are sparse, and it captures the heat capacity quan-
titatively. At higher temperatures, spin ice turns
into a more conventional paramagnet and the
monopole description breaks down (13). Together
with a recent analysis of dynamic susceptibility
(14), this lends strong support to the monopole
picture of the low-temperature phase of spin ice.

Monopole deconfinement is reflected in the
spin configurations: As the two monopoles of
opposite sign separate, they leave a tensionless
string of reversed spins connecting them. These
strings of reversed flux between the monopoles
can be viewed as a classical analog of a Dirac
string. In the theory of Dirac (15), these are
infinitely narrow, unobservable solenoidal tubes
carrying magnetic flux density (B-field) emanat-
ing from themonopoles. Here, the strings are real
and observable thanks to the preformed dipoles
of the spins; strings can change length and shape
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Glienicker Str. 100, D-14109 Berlin, Germany. 2Institut für
Festkörperphysik, Technische Universität Berlin, Hardenbergstr.
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Fig. 1. Gas of deconfined magnetic monopoles. (A) The Ising
spins are constrained to point along the direction connecting the
centers of the two tetrahedra they belong to. The lowest energy

for a tetrahedron is obtained for a two-in-two-out configuration, as illustrated. There are six such
configurations with net ferromagnetic moments along one of the six equivalent 〈100〉 directions. The
noncollinearity of the Ising axes is the source of the frustration in spin ice. In Dy2Ti2O7 the “Ising” crystal
field doublet is separated from other levels by more than 100 K. Applying a field, B || [001], results in a
preference for aligning the tetrahedral magnetization with the applied field direction (arrow). In the 3D
pyrochlore lattice, Dirac strings of flipped spins terminate on tetrahedra where magnetic monopoles
reside. (B) The measured heat capacity per mole of Dy2Ti2O7 at zero field (open squares) is compared with
a Debye-Hückel theory for the monopoles (blue line) and the best fit to a single-tetrahedron (Bethe lattice)
approximation (red line). The ice-blue background indicates the spin-ice regime; the yellow background
indicates the paramagnetic regime.
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Spin ice: magnetic Coulomb liquid → electrolyte/magnetolyte duality
NATURE PHYSICS DOI: 10.1038/NPHYS1896
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Figure 2 |An effective capacitor discharge for magnetic monopoles in spin ice. Observed magnetic moment change for various experimental conditions
compared to the prediction of a chemical kinetic model of charge generation and dissociation (red lines) of magnetic monopole currents. The graphs show
the measured magnetic moment NDy1µ(t) of a crystal of spin ice, Dy2Ti2O7, following the application and removal of a field (B, applied along the [100]
crystallographic axis) for a finite period of time (t0). Here, NDy is the number of Dy ions in the sample and µ is the magnetic moment density per Dy ion. a,
10-s field pulses of varying magnitude. b, Fixed-amplitude (0.5 mT) pulses of varying duration. The curves are offset for clarity. Using the chemical kinetic
model described in the text, the data have been fitted to produce parameters kOr = 0.099±0.009 s�1, kD = 0.000134±0.00001 s�1, Tb = 3.33±0.05 K,
Tf = 4.52±0.10 K (here, quoted standard errors are computed from the best-fit parameters for the nine data sets). Note that, although 1µ(t) is measured
on an absolute scale, the measuring technique does not locate its zero, which has therefore been fitted as a parameter for each curve. The experimental
resolution is smaller than the symbol size.

result, as it shows that all pairs that unbind as a result of the
presence of the field are oriented along the field direction and
that they contribute to the total moment as if separated by the
escape distance lT , even in the steady state. The form of the
pair distribution function for free charges ensures that unbound
charges seem to accumulate in correlated dipoles of moment
QlT (Fig. 1b). Furthermore, using equation (2) it follows that
the Wien effect can be rewritten to lowest order in field in an
experimentally accessible form:

µf
eq(B)= 1

2
(QlT )bnfeq (4)

This formalism predicts a linear magnetic response at low
temperature, which is quite different from that of a conventional
Ising ferromagnet, or a cooperative paramagnet such as the nearest-
neighbour model for spin ice. In the former, one expects a gapped
excitation spectrum and an exponentially small magnetic response,
whereas for the latter one expects a modified Curie law22. Here
we have a gapped response, as nf(T ) falls exponentially to zero
at low temperature, but the effective moments are composite
dipoles of moment QlT , scaled up from the magnetic moments
on the dysprosium ions by a factor (lT/a). This is a combined
effect of the deconfinement of the magnetic monopoles and the
appearance of lT as the natural length scale over which charge
inhomogeneities develop.

In addition to the free particles, the bound pairs will also
contribute to the response to the perturbing field B: the bound-pair
concentration does not change to first order in the field, but the
field-induced reorientation or polarization of bound pairs will
produce a magnetic moment µb that is linear with the field,
analogous to the dielectric response of a polar fluid. This moment
is the thermal average of the contributions of dipole moments of
magnitude⇠Qr between r =a and r = lT (see Fig. 1).We introduce
1ñb = [nb cos(✓)], where ✓ is the angle made by a bound pair with

the field direction and where [....] is the configurational average
over all pairs. In steady state 1ñ eq

b = nbeqhcos(✓)i, where h...i is a
thermal average. In the Methods section, we argue that, as most
pairs are separated by distances close to the nearest-neighbour
distance, the moment arising from reoriented bound pairs is, to
within a factor of order unity:

µb
eq(B)= (Qa0)1ñ eq

b (5)

where

1ñeqb ⇡ (Qa0B/kT )nbeq (6)

The moments µf
eq (equation (3)) and µb

eq (equation (5)) are
steady-state contributions to the total magnetic moment. Their
independent relaxation would give rise to two exponential decays.
However, they are not independent: 1ñb(t ) is fuelled by the
rebinding of free charges from the excess 1nf(t ). As excess free
particles are aligned with the field, such a recombination process
changes both the bound-particle concentration and the orientation
anisotropy of the bound pairs. Similarly, as there is a build up
of orientated bound pairs, if there is further dissociation of pairs
this process will be weighted in favour of oriented pairs. We
therefore propose that the two species are connected by the chemical
equilibria of equation (1), from which we deduce the following
linearized rate equations:

d1nf(t )
dt

= kD1ñb(t )�2K�1kDnfeq1nf(t ) (7)

d1ñb(t )
dt

= �(kOr +kD)1ñb(t )+2K�1kDnfeq1nf(t ) (8)

Here kOr is the rate constant for orientation of dipoles, which we
expect to be a rapid process with its scale fixed by creation and
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Table 1 | Estimated parameters at T=0.36K.

Description Symbol Measured Expected

Dissociation rate constant kD 1.3(1)⇥ 10�4 s�1

Recombination rate constant kR 1.04⇥ 103 s�1

Pair-orientation rate constant kOr 9.9(9)⇥ 10�2 s�1

Mean monopole hop rate ⇠ckR(a/lT);c⇡ 7.7 1.8⇥ 103 s�1 ⇠103 s�1 (refs 10,24)
Mean monopole lifetime ⇠(2kRnf)�1 ⇠150 s
Dissociation equilibrium constant K= kD/kR = nf

2/nb 1.25⇥ 10�7

Bound-pair density per Dy nb = e�Tb/T 1.0(1)⇥ 10�4 ⇠10�6 (this work)
Free-charge density per Dy nf = e�Tf/T 4(1)⇥ 10�6 2⇥ 10�6 (ref. 10)

Single standard-deviation errors on directly estimated quantities are given in brackets.
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Figure 4 |A near-perfect symmetry between electricity and magnetism illustrated by data collapse onto Onsager’s universal curve for theWien effect16.
a, Results of the present experiment as a function of the Onsager dimensionless field b represented by plotting the quantity (B)/(0) = 1+µf

eq/QlTnf,
where µf

eq is extrapolated from the measured magnetic relaxation data, and nf = e�Tf/T , with Tf close to the free-charge chemical potential ⌫f/kB ⇡�4.5 K
given by theory22 (sensitivity of the fit to Tf is illustrated). b, Our data (red squares) on logarithmic scales, compared to the relative electrical conductivity
of acetic acid at T= 298 K (ref. 31; green circles) and relative muon relaxation rate of spin ice11 at T= 0.1 K (there are no fitting parameters).

is peaked at T = 0.55K, indicating a crossover in behaviour
around this temperature, as previously observed24. Moreover,
Fig. 3c demonstrates that the kinetic model cannot describe the
T =0.55K data with a single set of parameters.

The tendency to a single-exponential decay at higher tempera-
ture agrees with previous observations24 and is evidence that the
system crosses over to a fully dissociated but strongly screened
Coulomb gas10 that exhibits only a free-current contribution to
µ(t ). The description of spin ice as a weak magnetolyte thus
seems to be valid at T < 0.5K. In the crossover regime between
weak magnetolyte and strong magnetolyte, bulk measurements
reveal various degrees of dynamical freezing in Dy2Ti2O7 between
0.7 and 0.3 K (refs 24,29,30). Our results provide evidence that
these non-equilibrium phenomena are direct consequences of the
analogy with weak electrolytes: the linear increase in free-charge
density leads to a linear magnetic response that can be accounted
for only through non-equilibrium physics16.

Universal data collapse
The present experimental data may be used to make a stringent
test of the Wien effect, which is almost independent of any
interpretation attached to the kinetic fits of Fig. 2. The steady-state
moment µf

eq(B) at T = 0.36K can be estimated from the fits to
equations (7) and (8) as the asymptotic value of µf at large time.

It can then be used to test equation (4), which is directly derived
from theWien effect, by plotting 1+µf

eq/QlTnf versus the Onsager
dimensionless parameter b, where we expect data collapse onto
the function f (b) = 1 + b/2 + b2/12 + ... (equation (2)). Here,
nf may either be considered a fitting parameter or else fixed to
the theoretical value, nf = (1/2)exp(⌫f/kBT ), using the numerical
estimate for the chemical potential, ⌫f/kB = �4.45K (ref. 22).
The result is shown in Fig. 4a, where it can be seen that there is
excellent agreement with the Onsager prediction, indicating that
the phenomenology presented here and in ref. 11 is correct. In
particular, the unequivocal appearance of the Bjerrum length, lT ,
as the length scale on which charge inhomogeneities appear in the
experiment is very strong evidence that important particle–particle
correlations occur in the spin-ice Coulomb gas and that it is the
Coulomb interaction that sets the scale for them.

A more comprehensive data collapse onto Onsager’s universal
curve is illustrated in Fig. 4b, which plots the relative muon
relaxation rate of spin ice11 and the relative electrical conductivity
of acetic acid as reported by Gledhill and Patterson31, as well
as the points extracted from the present data and analysis. The
collapse of data over a broad range of experimental systems,
techniques and parameter ranges is very striking and unequivocally
demonstrates the universal applicability of Onsager’s result to both
electricity and magnetricity.
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Table 1 | Estimated parameters at T=0.36K.

Description Symbol Measured Expected

Dissociation rate constant kD 1.3(1)⇥ 10�4 s�1

Recombination rate constant kR 1.04⇥ 103 s�1

Pair-orientation rate constant kOr 9.9(9)⇥ 10�2 s�1

Mean monopole hop rate ⇠ckR(a/lT);c⇡ 7.7 1.8⇥ 103 s�1 ⇠103 s�1 (refs 10,24)
Mean monopole lifetime ⇠(2kRnf)�1 ⇠150 s
Dissociation equilibrium constant K= kD/kR = nf

2/nb 1.25⇥ 10�7

Bound-pair density per Dy nb = e�Tb/T 1.0(1)⇥ 10�4 ⇠10�6 (this work)
Free-charge density per Dy nf = e�Tf/T 4(1)⇥ 10�6 2⇥ 10�6 (ref. 10)

Single standard-deviation errors on directly estimated quantities are given in brackets.
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Figure 4 |A near-perfect symmetry between electricity and magnetism illustrated by data collapse onto Onsager’s universal curve for theWien effect16.
a, Results of the present experiment as a function of the Onsager dimensionless field b represented by plotting the quantity (B)/(0) = 1+µf

eq/QlTnf,
where µf

eq is extrapolated from the measured magnetic relaxation data, and nf = e�Tf/T , with Tf close to the free-charge chemical potential ⌫f/kB ⇡�4.5 K
given by theory22 (sensitivity of the fit to Tf is illustrated). b, Our data (red squares) on logarithmic scales, compared to the relative electrical conductivity
of acetic acid at T= 298 K (ref. 31; green circles) and relative muon relaxation rate of spin ice11 at T= 0.1 K (there are no fitting parameters).
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