

Wir schaffen Wissen – heute für morgen

Quantum Critical Points in Systems with Effective Singlet Ground-States

Christian Rüegg

Laboratory for Neutron Scattering and Imaging Paul Scherrer Institute and University of Geneva

PSI-China Meeting, Brugg, 4 May 2015

May 8, 2015

Laboratory for Neutron Scattering and Imaging

STAFF:

26 Scientists (Head: Prof. Ch. Rüegg, PSI/UniGE) 12 Postdocs 14 Ph.D. students

INSTRUMENTS AT SINQ:

13 instruments at SINQ with 400 experiments per year

SCIENCE:

Fundamental, materials-driven research with neutrons Key topics: atomic and magnet structures, magnetism, electronic correlations, soft matter and biology, energy storage and conversion, health care 150 publications per year (40% in high-impact journals)

EDUCATION:

Ph.D. program, student practicals (EPFL, ETH, Uni Basel), lectures, schools

FUNDING:

PSI, SNF, SBFI, EU, national and international partners (EPFL, UniGE, DANSCATT)

New Instruments CAMEA and ZEBRA at SINQ

Design Goals

Small samples of new emergent materials, thin films, heterostructures **Multi-extreme conditions** (temperature, pressure, magnetic and electric fields)

CAMEA

Upgrade of cold TAS RITA-II at SINQ Collaboration: PSI-EPF Lausanne Funding: SNF R'equip, EPFL, and PSI

ZEBRA

Upgrade of diffractometer TriCS at SINQ Collaboration: PSI-University of Fribourg Funding: SNF R'equip and PSI

Conclusions

Neutron High-Pressure Experiments

- wide pressure and temperature range now available (150 kbar/4 K, 30 kbar/0.3 K)
- limited by sample volume (no DACs, but can do spectroscopy)

Quantum and thermal melting of order in Quantum Magnets

- direct control of exchange interactions and ground state by pressure
- new elementary excitation (amplitude Anderson-Higgs mode) emerges at QCP
- test of field theory predictions
- similarity of quantum and thermal melting
- QC regime has excitation 'gap'
- QC scaling form is Lorentzian
- universal proportionality of $\rm T_N$ and $\rm m_s$
- P. Merchant et al., Nat. Phys. 10, 373 (2014).

Ch. Rüegg, May 8, 2015

PRL 111, 197201 (2013)

PHYSICAL REVIEW LETTERS

week ending 8 NOVEMBER 2013

Excitonic Magnetism in Van Vleck-type d⁴ Mott Insulators

Giniyat Khaliullin

Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany (Received 31 July 2013; published 5 November 2013)

In Mott insulators with the t_{2g}^4 electronic configuration such as of Re³⁺, Ru⁴⁺, Os⁴⁺, and Ir⁵⁺ ions, spin-orbit coupling dictates a Van Vleck-type nonmagnetic ground state with an angular momentum J = 0, and the magnetic response is governed by gapped singlet-triplet excitations. We derive the

Collaborators

London Centre for Nanotechnology

P. Merchant (UCL/PSI) D.F. McMorrow

Theory

B. Normand (Renmin)M. Matsumoto (Shizuoka)M. Sigrist and T.M. Rice (ETH Zurich)

Discussions

M. Vojta (TU Dresden) S. Sachdev (Harvard) A. Sandvik (Boston) T. Esslinger (ETH Zurich)

 Neutron Scattering Centers SINQ (B. Roessli) and ILL (M. Boehm) FRM-II (T. Keller)

Samples
K. W. Krämer, D. Biner (Uni Bern)

NANOTECHNOLOG

FNSNE

CELEBRATING 350 YEARS

SWITZERLAND

Swiss National Science Foundation

Ch. Rüegg, May 8, 2015