

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institute

Alexander Gerbershagen

Advantages and challenges of superconducting magnets in gantry design

18 September 2015

Content

Motivation: reduce facility's

- Cost
- Weight

Height

- Use of superconductivity
 - Potential to fulfill the criteria,
 - Advantages result from the strong fields (e.g. high momentum acceptance),
 - Additional costs from cooling,
 - Additional risks from quenching,
 - Challenges dealing with stray fields.

• Examples of existing gantries and designs with SC magnets

Consider changing customer composition Research centers ...

... give way to large hospitals.

- \Rightarrow Major interest in treating the maximal number of patients
- \Rightarrow Require
- High reliability of the machines
 - Maximal treatment interruption of couple of days
 - No quenching/good quench protection
- Easiness of service
 - Minimal warm up and cool down times

Advantages of SC magnets in gantries

Proton gantries

Reduction of:

- power consumption
- weight

Example: ProNova SC360, 25t

- => Most distances dictated by the purpose of the gantry:
- d from final bend to the patient
- Scanning system
- Beam focussing
- Dispersion suppression

Carbon ion gantries

Reduction of:

- power consumption
- weight
- size

Example: Toshiba-gantry at NIRS, 300t

450 MeV/nucl C⁶⁺: $B\rho = 6.8$ Tm

=> Large share of distances dictated by the beam bending radius

Challenges of SC magnets in gantries

- Strong electromagnetic fields in the magnet
 - Need high mechanical stability to counteract the effects of $\vec{F}_{Lorentz}$
 - Strong and extended stray fields

Effect of iron in the surroundings

B must be < 0.5 mT at the iso-center

=> Require passive/active shielding

Beam scattering in magnet

=> Possible quenching?

– Maintenance

Requires dedicated know-how

- Scanning is performed in layers
- The energy change between two layers should be ideally performed in <100 ms
- The momentum step between two layers is ~1%

=> Two options:

- Magnet ramping speed of ~1% dB/B in 100 ms
- Gantry momentum acceptance very large ($\Delta p/p > 10-20\%$)

Temperature variation due to magnet ramping

- All energy stored in the magnet is transformed into thermal energy
- AC losses from
 - Hysteresis in the superconductor magnetization
 - Coupling currents among the filaments and strands

Cooling options

- Bath cooling
 - liquid helium (<4.5 K)
 - challenging to manufacture a rotating cryostat
 - helium quench pipelines have to be implemented
- Forced flow cooling
 - supercritical helium at 4.5-5 K and 3-8 bar
 - requires a cooling and pressurizing system
 - vibration in case of turbulent flow
- Cryo-coolers directly coupled to the cold mass
 - no cryogenic fluid in the magnet
 - heat removal is limited (~1.5 W at 4.2 K)
 - loud noise

Superconducting coil

- NbTi
 - Most commonly used, >50 years of experience
 - Ductile material
 - Very thin filaments (<1 µm diameter)
 => reduce AC losses
- Nb₃Sn
 - *T_c* of 18 K
 - 10x price of NbTi
 - Brittle, strain sensitive
- MgB₂
 - *T_c* of 39 K
 - Low I_C even at low B
 - Low strain tolerance
- YBa₂Cu₃0_{7-x}
 - *T_c* of 92 K
 - In form of a tape on a carrier material

Existing sc gantries – Toshiba and NIRS

- Carbon gantry
- Significant size reduction: r = 5.45, l =13 m
 - compare to HIT in Heidelberg: r= 6.5 m, l= 25 m
- Upstream scanning
- Final bend: 4 magnets with different aperture

Vertical

Horizontal

- 330 MeV proton beam required for pCT
- 10 identical superconducting magnets
- Size comparable with existing nc gantries

SC gantry design – ProNova

- Cells consist of focusing, defocusing and focusing quadrupoles.
- Orbit offsets for the required energy range are relatively small
 => very large Δp/p (>50%) for a fixed magnetic field

SC gantry design – PSI & LBNL

- Combined function CCT magnets with alternating gradient
- Upstream scanning
- Momentum acceptance of over ±10%
 - Treatment of the small tumors without change of the SC magnet field
 - Treatment of large tumors with only one or two of such changes
 - Can be used i.e. for volumetric rescanning on a very fast time scale

- The weight and, for the heavy ions, the size advantage of SC gantries promises significant cost and footprint reduction => particularly important for the commercial particle therapy
- Some challenges remain

Summary

- Fast ramping of the magnetic field,
- Most common superconducting material (NiTi) has a limited T-margin,
- Cooling options are restricted due to gantry rotation,
- Patient located near the strong magnetic fields,
- Need to keep high reliability and availability.
- Use of SC magnets gains popularity among the particle therapy research centers and companies and promises to give this treatment method a big push in development regarding
 - Cost efficiency,
 - Practicality of such facilities,
 - Better accuracy via new treatment and diagnostic techniques.

99.9%

14

Thank you very much for your attention!

