## How to keep high quality treatments using a compact gantry



R&D Physicist

Emma Pearson

Emma.Pearson@iba-group.com

1

## The Recipe for Success...



Industrial Plan: 2015 onwards...

## A well designed product

- Product Requirements defined by our users
- Incorporating the best of 15 years ProteusPLUS experience
- Rigorous Product Lifecycle Management

## A well thought industrial plan

Proactive detailed roadmap for manufacturing, installation and maintenance

## A well prepared operation & maintenance plan

Training, certification and documentation associated to predictive maintenance





# The Design

### ProteusONE: Compact Proton Therapy System

**COMPACT** Robust Gantry & accelerator design IMPT Most Precise Treatments Easy Workflow

> INTEGRATED Software, Dosimetry & Training

ProteusPLUS

18000 ft² / 1672 m²

3600 ft² / 334 m²

**ProteusONE** 



## Gantry Optics Design





| Computation made using the PSI Graphic Transport Framework by U. Rohrer, based | on a |
|--------------------------------------------------------------------------------|------|
| CERN-SLAC-FERMILAB version by K.L. Brown et al.                                |      |

| TABLE 1: KEY PARAMETERS FOR THE<br>PROTEUSONE® |                            |
|------------------------------------------------|----------------------------|
| Energy                                         | 70-230 MeV                 |
| SCANNING MECHANISM                             | Pencil beam scanning       |
| GANTRY RADIUS                                  | 3.6 meters (30% reduction) |
| BEAM CURRENT                                   | ~20 nA (on degrader)       |
| OPERATION                                      | Pulsed beam                |
| PULSE LENGTH                                   | ~ 7 microseconds           |
| REPETITION RATE                                | 1000 Hz                    |
| GANTRY ROTATION<br>ANGLE                       | 220 degrees                |
| PATIENT TABLE<br>ROTATION                      | 180 degrees                |
| TREATMENT PATCH                                | 250x200 mm                 |

## Integrated into Gantry



#### It is crowded but everything fits in...



..."Compact" also means new problems to solve



# **Operation and Maintenance**



It's a good product... but it's also reliability and uptime (availability)

#### Proton Therapy Challenges

- Equipment is spread around the world, but expertise is concentrated
- Access to the equipment is limited by clinical operation. Fix it now!
- Not possible to have every spare part locally
- Differences in the equipment configuration
- Working with suppliers to fix reliability issues
- IBA's Advantages
  - Large installed base of ProteusPlus and long data history to draw from
  - Large R&D and Accelerator Engineering Dept. (300 / 1200 employees)
  - 30 years of experience in commercial accelerators
  - Worldwide spare part network

### Why does reliability matter?









#### Total Unavailability by Event Duration

4% of the failures cause 70% of the downtime.

## **Our Continuous Improvement Process**

2+ hour failure triggers Root Cause Analysis (RCA) process.



## Maximising System Availability for ProteusONE









Trained and certified maintenance experts



#### Remote maintenance ready



#### Proteus**ONE**

- Latest technology
- Largest proton therapy team
- Operate at the maximum uptime since the first unit



## Specific Examples



#### Improving the maintenance plan

- After approximately 4 years of operation, holes appear in the ionization chamber.
- Last year, we launched a 2-year preventative replacement schedule which does not impact users throughput.





#### Improving the design

- Stray field around the wide aperture bending magnet exit can affect magnetic materials
- Some structural elements were not designed with this in mind: the holding rods for the retractable snout
- Magnetic forces inhibited snout movement
- Solution: replaced the magnetic rods with non-magnetic inox





# **Commissioning Update**

## **Shreveport Project Update**

## ProteusONE – The Willis Knighton Story

Iba

Update since the last Gantry Workshop...

-

From Gantry delivery to treatment in less than 1 Year

## July 2014 : Acceptance



#### User Group defined patterns for easy acceptance & QA





## First Patient Treatment : September 9th, 2014 (As Planned) 16

Prostate – 2 fields

#### Full alignment and treatment delivered from Control Room

### Beam ON: Under 30 seconds per field



Julien Forthomme – IBA Physics

Dr. Lane R. Rosen

20

## Today in Willis Knighton

**19 patients per day** – Ramping up

.

15 minutes – 2 field pelvis

98% Uptime since day 1

## **Nice Project Update**

## From Rigging To Equipment Start Up



#### Gantry







#### **Reminder: 11 days for Willis Knighton**





### Beam Characteristics: Spot Size At Isocenter



(ba



. . .



The compact gantry is working well and we are building a roadmap for series production

2009: First sketch of prototype in Louvain-la-Neuve, Belgium2013: First beam at isocentre

2014: First patient treated in Willis Knighton Centre (Shreveport)2015: Move to series production: 7 confirmed projects

**2017**: Forecast 10 compact gantries per year

## Thank you for your attention



R&D Physicist

2

Emma Pearson

Emma.Pearson@iba-group.com

