

Status of the superconducting rotating gantry for heavy-ion therapy

2015/9/18

<u>Yoshiyuki Iwata</u>

National Institute of Radiological Sciences (NIRS)

Introduction

- Gantry developments
 - Superconducting magnets
 - Construction of gantry structure
- Summary

Introduction

Carbon radiotherapy at NIRS

- Heavy Ion Medical Accelerator in Chiba (HIMAC)
 - Ion species: p~Xe
 - E/A=800 MeV @A/Z=2
- >9000 patients treated
- New treatment facility
 - Room E & F
 Fixed H&V scanning ports
 (in treatment operation)
 - Room G

Rotating gantry port (Under development)

Treatment floor (B2F)

Superconducting rotating-gantry

Weight: order of 300 tons

Use of superconducting (SC) magnets

Ion kind: 12 CIrradiation method: 3D ScanningBeam energy: 430 MeV/nMaximum range: 30 cm in waterScan size: $\square 200 \times 200 \text{ mm}^2$ Beam orbit radius: 5.45 mLength: 13 m

The size and weight are considerably reduced

Layout of the SC gantry

Beam optics design

Beta and dispersion functions

Beam envelope functions with kicks of scanning magnets

Development of superconducting magnets

SC coil and model magnet

- Superconducting test coil
- Model SC magnet
- Rotation tests
 - No quench observed ■ Displacement of coil≦±0.4mm

Test coil

SC coil design with Opera-3d code

SC coils were precisely modelled

Corrected uniformity

Design of SC magnets

All the SC magnets were designed by using a 3D magnetic field solver

Cooling of SC magnets

- 4K GM compact cryocoolers
 - Liquid He free

Construction and tests of the SC magnets

Construction of SC magnets

Initial cooling of SC magnet

- Precool with liquid nitrogen
- It took a week to cool down by 4K

CX1: Cryocooler#1 2nd stage CX2: Cryocooler#2 2nd stage CX3: Cryocooler#3 2nd stage CX4: SC coil (inner) CX5: SC coil (middle) CX6: SC coil (outer) CX7: Yoke (right face) CX8: Yoke (left face) PT1: Cryocooler#1 1st stage PT2: Cryocooler#2 1st stage PT3: Cryocooler#3 1st stage PT4: HTCPL Dipole (P) PT5: HTCPL Dipole(N) PT6: HTCPL Quadrupole (P) PT7: HTCPL Quadrupole (N)

NIRS HIMAC

Field measurements (1)

- Magnetic field measurements were performed
 - to verify the SC magnet design

B-I measurement with NMR probes

NIRS HIMAC

Field measurements (2)

- Field mapping with Hall probes
- Quadrupole field observed
 - Only dipole coil excited
 - This quadrupole can be corrected by adjusting coil current, applied to the quadrupole coil
 - ▲GL/GL_{quard}~0.5-0.7% (depending on magnet kind)

- Tests with maximum slew-rate
- I=45~136 A (E=56~430 MeV/u)
- No quench observed
- Average temperature converged below Tc~6.8 K

Stabilization time of dipole field

- Time to stabilize the dipole field was measured
- Pickup coil was installed in the magnet
- 202 step pattern was used
- Voltage, as excited by the field change was measured and integrated to evaluate the stabilization time

Emittance compensation

Emittance compensation (1)

H&V emittances are not generally equal

- $\epsilon_H \sim 0.3 \pi \text{mm·mrad}, \epsilon_V \sim 1 \pi \text{mm·mrad}$ for E=430 MeV/u

H&V beam coupling

-0.5 0.0 0.5

1.0

67.5 deg

-1.0

Calculated beam spot at isocenter, assuming H/V emittances differ by 10%

Emittance compensation (2)

H&V emittances have to be matched

- Thin scatterer is utilized to accomplish $\epsilon_{\text{H}}{=}\epsilon_{\text{V}}$

Emittance compensation (3)

- Beam tests at the existing beam line
- Design size: 2 mm and 3 mm
 - beta's were designed to be $\beta_{\text{H}}{=}\beta_{\text{V}}$ at the profile monitor
- Test results agreed with the design

Design and construction of Gantry structure

Construction of a scale model

- 1/5 scale model
- Characteristics, compared with FEM calculations

With knowledge, obtained by the model, a full gantry structure was designed!

Beam orbit corrections

FEM calculations

- Displacement of magnets≦~1mm
- Orbit corrections with steering magnets •
 - Central beam orbit≦~3.5mm

Rotation tests at Toshiba

Transportation to NIRS

Installation to the gantry room

NIRS

Reassembling at NIRS

Rotation tests at NIRS

- Target of a laser tracker was placed at the isocenter
- Positions were reproduced by
 - $-\pm 0.04$ mm (transverse)
 - $-\pm 0.1$ mm (longitudinal)

Treatment-room design

 The treatment room for the gantry was designed, based on the existing room E & F

Development of the superconducting rotating-gantry

- Compact
- Construction will be completed by the end of this month
- Future plan
 - Commissioning will be made from this October
 - Treatment will be planned in 2016

Collaborators

- K. Noda, T. Shirai, T. Fujita, T. Furukawa,
 K. Mizushima, Y. Hara, Y. Saraya, R. Tansho,
 S. Matsuba, S. Mori, S. Sato, K. Shoda (NIRS)
- T. Fujimoto, H. Arai (AEC)
- T. Ogitsu (KEK)
- N. Amemiya (Kyoto Univ.)
- Y. Nagamoto, T. Orikasa, S. Takayama, (Toshiba)