ATF2: the **linear collider** final focus prototype at KEK

- an international telescope for nanometre size beams -

Philip Bambade

Laboratoire de l'Accélérateur Linéaire Université Paris 11, Orsay, France

Accelerator Seminar at Paul Scherrer Institute, Villigen 7 February 2011

KEK High Energy Accelerator Research Organization, Tsukuba site, Japan

ATF International Collaboration

Linear collider concept

focus RF technology (gradient, efficient power transfer) beam phase-space control and stability

→ synchrotron radiation still drives design…

ATF & ATF2 R&D for linear colliders

Luminosity	$\eta_{ m efficience}$	ency P _{elec} E _{cm}	$\frac{N_e}{\sigma_x \sigma_y}$	linac RF + sources
	$\rightarrow \frac{\eta_{efficient}}{2}$	$\frac{P_{elec}}{E_{cm}} \sqrt{\frac{1}{2}}$	$\delta_{beamstrahlung}$	trade-of
Parameters	ATF2	ILC	CLIC	beam size control & stability
Beam Energy [GeV]	1.3	250	1500	
L* [m]	1	3.5 - 4.5	3.5	1
γε _{x/y} [m.rad]	5E-6 / 3E-8	1E-5 / 4E-8	6.6E-7 / 2E-8	
IP β _{x/y} [mm]	4 / 0.1	21 / 0.4	6.9 / 0.07	
IP η' [rad]	0.14	0.0094	0.00144	Ŭ.
δ _Ε [%]	~ 0.1	~ 0.1	~ 0.3	•
Chromaticity	~ 1E4	~ 1E4	~ 5E4	
Number of bunches	1-3 (goal 1)	~ 3000	312	COST
Number of bunches	3-30 (goal 2)	~ 3000	312	Č.
Bunch population	1-2E10	2E10	3.7E9	feasibility
IP σ _y [nm]	37	5.7	0.7	

Accelerator Test Facility @ KEK

final doublet final focus section diagnostic and matching extraction

R&D deliverables from Test Facilities for ILC BDS and DR

Test Facility	Deliverable	Date		
Hardware development, Optics and stabilisation demonstrations:				
ATF	Demo. of reliable operation of fast kickers meeting the specifications for the ILC damping ring.			
	Generation of $\varepsilon_y = 1$ pm-rad emittance beam			
	Demo. of compact Final Focus optics (design demagnification, resulting in a nominal 35 nm beam size at focal point).	2010		
ATF2	Demo. of prototype SC and PM final doublet magnets			
Stabilisation of 35 nm beam over various time scales.				
Electron cloud mitigation studies:				
	Re-config. (re-build) of CESR as low-emittance e-cloud test facility. First meas. of e-cloud build-up using instrumented sections in dipoles and drifts sections (large emittance).			
CESR-TA	Achieve lower emittance beams. Meas. of e-cloud build up in wiggler chambers.			
	Characterisation of e-cloud build-up and instability thresholds as a func. of low vertical emittance (≤20 pm)			
DΑΦΝΕ	Fast kicker design and pulser reliability check	2010		
	Characterisation of e-cloud build-up and instability thresholds	2010		
SLAC/LLNL	Fast kicker pulser development	2010		

ATF meets ILC normalised emittance challenge

Beam extraction with fast strip-line kicker

T. Naito (KEK), ATF2 project meeting, Jan. 2011

- •The beam extraction test was carried out to confirm the performance of the ^{**} strip-line kicker.
- •The pulsed magnet kicker was replaced to two units of 60cm long strip-line kicker.
- •To help the lack of the kick angle, a local bump orbit and an auxiliary septum is used.

600

400

200

-10

Kicker field

12000

8000

6000

4000

2000

-2000

Kicker pulse

(10kV)

Damping Ring

High Energy Accelerators Research Organization (KEK)

Multi-bunch Beam in the DR and the extraction line

3 trains of 10 bunches are stored in the DR

5.6 ns separation

Stable beam extraction confirmed to the dump without any beam loss

~ 300 ns separation

R&D deliverables from Test Facilities for ILC BDS and DR

Test Facility	Facility Deliverable			
Hardware development, Optics and stabilisation demonstrations:				
ATF	Demo. of reliable operation of fast kickers meeting the specifications for the ILC damping ring.			
	Generation of $\varepsilon_y = 1$ pm-rad emittance beam	2009		
	Demo. of compact Final Focus optics (design demagnification, resulting in a nominal 35 nm beam size at focal point).	2010		
ATF2	Demo. of prototype SC and PM final doublet magnets	2012		
Stabilisation of 35 nm beam over various time scales.				
Electron cloud mitigation studies:				
	Re-config. (re-build) of CESR as low-emittance e-cloud test facility. First meas. of e-cloud build-up using instrumented sections in dipoles and drifts sections (large emittance).			
CESR-TA	Achieve lower emittance beams. Meas. of e-cloud build up in wiggler chambers.			
	Characterisation of e-cloud build-up and instability thresholds as a func. of low vertical emittance (≤20 pm)			
DΑΦΝΕ	Fast kicker design and pulser reliability check	2010		
	Characterisation of e-cloud build-up and instability thresholds	2010		
SLAC/LLNL	Fast kicker pulser development	2010		

From QD20X to the dump 1

Wasn't FFTB sufficient ?

Not operated as dedicated facility
 → small beam sizes shown but little reproducibility
 and systematic study

- Long-term stabilisation issues not addressed
- 3. Final Focus not based on new principle of local chromaticity correction

ATF2 = scaled ILC & CLIC final focus \rightarrow new local chromaticity correction

P. Raimondi and A. Seryi, Phys. Rev. Lett. 86, 3779 (2001)

Project goals

<u>Goal A</u> : nanometer beam size <u>Goal B</u> : trajectory stabilization

- obtain $\sigma_v \sim 35$ nm at focal point - 1-2 nm at focal point

- reproduce reliably σ_v , maintain in time- intra-train feedback (ILC-like trains)
 - 1. Instrumentation R&D for nano-beams
 - 2. User-based operation through international multi-partner collaboration
 - 3. Co-education for young accelerator physicists and engineers

Planning

- Construction & installation completed in 2008
- 2009 / 2010 commissioning and testing
- 2011 / 2012 goals A & B + instrumentation R&D
- After 2013, continue Linear Collider R&D + physics with intense laser

ATF2 COST : ~ 6 M\$ → mainly from Asia, with US & EU contributions

Daily operation meeting in control room

ATF2 operation & instrumentation R&D

25

o

IP

-0.6

-1.0

Commissioning periods

Dec. 2008	\rightarrow 3 weeks	
2009	→ 21 weeks (=1+2+4+3+3+1+2	+2+3)
Jan. – Jun. 2010	→ 14 weeks (=3+2+2+3+2+1+1)	1 st continuous week
Autumn 2010	→ 7 weeks (=2+2+3)	2 nd continuous week

2011 → 6 continuous shifts with 3 rotating teams, each composed of 3 primary experts (ATF2 tuning, "Shintake" monitor, ATF general operation) + supporting staff

Beam time scheduling

50% fraction for ATF2 & 4 days per week operation

Individual RD tasks & common goals

KEK, KNU, Tokyo, Sendai, SLAC, IHEP, UK, France, Spain, CERN,...

ATF2 educational function

Several PhD & young post-doc researchers in accelerator science

Commissioning \rightarrow gradual $\beta_{x,y}^*$ (demagnification) reduction paced by

beam tuning | instrumentation (BSM / other) | bac

background study

Variable β_{IP} at ATF2

S. Bai (IHEP, LAL), 2008-2009

ATF2 BPM systems

IP BPMs

Mover

Corrector

S. Boogert (RHUL), ATF2 project meeting, Jan. 2011

Y. Kim, ATF Operation Meeting, 23 April, 2010

All BPM Resolution Determination

Reconstructing variations at injection (during dispersion measurements)

Y dispersion from energy fluctuations < 1e-4

Neutron and EM background study

H. Guler & M. Verderi (LLR), ATF2 project meeting, Jan. 2011

- Made a set of 8 simple detectors = {scintillator + photomultiplier}
 - That can be used alone
 - Or assembled in boxes to form « mini-calorimeters » with longitudinal segmentation (with W insertion if needed)
- Scintillator = plastic or pure Csl
 - Fast : allows TOF
 - Distinguish background sources
 - Separate (prompt) EM and (delayed) neutron backgrounds
 - Different response to neutrons:
 - Plastic sensitive to fast neutrons
 - Intermediate neutrons for Csl

Preliminary Geant4/data comparison

order of magnitudes.

Shintake Monitor : Layout

Shintake Monitor

"Shintake" beam size monitor at IP

Shintake Monitor Best Result, 20 May 2010

Multiknobs for <xx'>, <yy'>, <yx'>, <x δ_E > and <y δ_E > control

First ATF2 continuous tuning run, Dec. 2009

Dec 2010 Tuning Data

G. White (SLAC), ATF2 project meeting, Jan. 2011

<xy> Correction

= 48.7 nm

70

a = 5.6 nm

60

50% CL = 48.0 nm

90% CL = 57.1 nm

70

80

skew sextupole tolerance compared to the measurement for the quadrupoles

Best quadrupoles: QM15FF, QD10X, QF11X, QF17X, QD18X Worst quadrupoles:QD4BFF, QD0FF, QF5AFF, QF9AFF, QF5BFF

D. Wang (IHEP), ATF2 project meeting, Jan. 2011

Conclusions and prospects

- Success of ATF → federation of independent R&D teams
 - → flexible & open user-operated facility
- Post-Docs, PhD & Master students international co-supervision
- Excellent progress with instrumentation: stripline & cavity BPMs, "Shintake" beam size monitor and several other ATF2 R&Ds
- 1st and 2nd ATF2 continuous beam tuning run in May & December
 - → 300 nm vertical spot (target was ~ 100 nm)
 - → Issue of "operational stability" for extended runs
 - → New "goal 1 dedicated" operation mode in 2011
- ATF operation guaranteed for dedicated LC R&D to end of 2012
- Program continuation for LC + extension to other science goals (e.g. strong field physics with intense laser) beyond 2012

Dr Theses

Year	university	country	Name	title	publication
2007.11.12	Université de Savoie	France	Benoit Bolson	Etude des vibrations et de la stabilisation a l'echelle sous- nanometrique des doublets finaux d'un collisionneur lineaire	
2007.12.21	University of Tokyo	Japan	Taikan Suehara	Development of a Nanometer Beam Size Monitor for ILC/ATF2	Nuclear Instruments and Methods in Physics Research A 616 (2010) 1–8
2009.4.14	Royal Hollow <i>a</i> y, University of London	UK	Lawrence Deacon	A Micron-Scale Laser-Based Beam Profile Monitor for the International Linear Collider	PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS submitted (May 2010)
2010.6.8	UNIVERSITAT DE VALÈNCIA	Spain	Maria del Carmen Alabau Pons	Optics Studies and Performance Optimization for a Future Linear Collider: Final Focus System for the e-e- Option (ILC) and Damping Ring Extraction Line (ATF)	
2010.5.8	IHEP CAS	China	Sha Bai	ATF2 Optics System Optimization and Experiment Study	Paper with title "First beam waist measurements at the Accelerator Test Facility 2 at KEK" submitted to PRSTAB
2010.6.11	Université Paris-Sud 11	France	Yves Renier	Implementation and Validation of the Linear Collider Final Focus Prototype ATF2 at KEK (Japan)	
	Oxford university	UK		FONT studies	
2011.12.1	University of Tokyo	Japan	Masahiro Oroku	Beam Tuning with the Nanometer Beam Size Monitor at ATF2	
2011.12.1	Kyungpook National University	Korea	Youngim Kim	IPBPM and BBA	
2011.12.1	University of Manchester	UK	Anthony Scarfe	Tuning and alignment of ATF2 and ILC	
2012.2.xx	University of Tohoku	Japan	Taisuke Okamoto	cavity-type tilt monitor of beam orbit for ILC	
2012.12.1	Kyungpook National University	Korea	Siwon Jang	IPBPM and BBA	
2012.12.1	CERN	Spain	Eduardo Marin Lacoma	Ultra Low Beta Optics	
	Oxford university	UK		FONT studies	
	ICIF, Valencia university	Spain	Javier Alabau- Gonzalvo	emittance, coupling measuremwnts with multiple OTR system	

Publication of First Results by May 2009

in PR-STAB 13, 042801 (2010)

Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

P. Bambade,^{1,6,*} M. Alabau Pons,² J. Amann,³ D. Angal-Kalinin,⁴ R. Apsimon,⁵ S. Araki,⁶ A. Aryshev,⁶ S. Bai,⁷ P. Bellomo,³ D. Bett,⁵ G. Blair,⁹ B. Bolzon,⁸ S. Boogert,⁹ G. Boorman,⁹ P. N. Burrows,⁵ G. Christian,⁵ P. Coe,⁵ B. Constance,⁵ J.-P. Delahaye,¹⁰ L. Deacon,⁹ E. Elsen,¹¹ A. Faus-Golfe,² M. Fukuda,⁶ J. Gao,⁷ N. Geffroy,⁸
E. Gianfelice-Wendt,¹² H. Guler,¹³ H. Hayano,⁶ A.-Y. Heo,¹⁴ Y. Honda,⁶ J. Y. Huang,¹⁵ W. H. Hwang,¹⁵ Y. Iwashita,¹⁶ A. Jeremie,⁸ J. Jones,⁴ Y. Kamiya,¹⁷ P. Karataev,⁹ E.-S. Kim,¹⁴ H.-S. Kim,¹⁴ S. H. Kim,¹⁵ S. Komamiya,¹⁷ K. Kubo,⁶
T. Kume,⁶ S. Kuroda,⁶ B. Lam,³ A. Lyapin,¹⁸ M. Masuzawa,⁶ D. McCormick,³ S. Molloy,⁹ T. Naito,⁶ T. Nakamura,¹⁷ J. Nelson,³ D. Okamoto,¹⁹ T. Okugi,⁶ M. Oroku,¹⁷ Y. J. Park,¹⁵ B. Parker,²⁰ E. Paterson,³ C. Perry,⁵ M. Pivi,³
T. Raubenheimer,³ Y. Renier,¹⁶ J. Resta-Lopez,⁵ C. Rimbault,¹ M. Ross,¹² T. Sanuki,¹⁹ A. Scarfe,²¹ D. Schulte,¹⁰
A. Seryi,³ C. Spencer,³ T. Suehara,¹⁷ R. Sugahara,⁶ C. Swinson,⁵ T. Takahashi,²² T. Tauchi,⁶ N. Terunuma,⁶ R. Tomas,¹⁰
J. Urakawa,⁶ D. Urner,⁵ M. Verderi,¹³ M.-H. Wang,³ M. Warden,⁵ M. Wendt,¹² G. White,³ W. Wittmer,³ A. Wolski,²³

(ATF Collaboration)

¹LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France ²Instituto de Fisica Corpuscular (CSIC-University of Valencia), Valencia, Spain ³SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA Cockcroft Institute, STFC, Daresbury Laboratory, United Kingdom ⁵John Adams Institute, Oxford, United Kingdom ⁶High Energy Accelerator Research Organization, Tsukuba, Japan ⁷Institute of High Energy Physics, Beijing China ⁸LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux, France ⁹John Adams Institute, Royal Holloway, United Kingdom ¹⁰European Organization for Nuclear Research, Geneva, Switzerland ¹¹Deutsches Elektronen-Synchrotron, Hamburg, Germany ¹²Fermi National Accelerator Laboratory, Batavia, Illinois 60510-5011, USA ¹³Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Palaiseau, France. ¹⁴Kyungpook National University, Korea ¹⁵PAL, Korea ¹⁶Kyoto ICR, Japan ¹⁷The University of Tokyo, Japan ¹⁸UCL, London, United Kingdom 19 Tohoku University, Japan ²⁰Brookhaven National Laboratory, Upton, New York 11973-5000, USA ²¹Cockcroft Institute, University of Manchester, United Kingdom ²²Hiroshima Üniversity, Japan ²³Cockcroft Institute, University of Liverpool, United Kingdom (Received 1 November 2009; published 21 April 2010)

ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

ATF long term plan

Additional slides

Cost Breakup, May 2010

May 2010

(1) mini-ILC model

equal sharing on the components, while the host country prepares the conventional facility.

(2) present status a la Japanese costing rule

Multi-OTR & Bkgd Monitors not included

May,2010

Multi-OTR & Bkgd Monitors to be added

ATF2 FB system: FONT5 (Oxford, KEK)

beam

Dedicated system:

2 stripline

P.N. Burrows

kickers (K1 , K2) + fast drive amplifiers

• 3 stripline BPMs(P1,P2,P3) +

fast analogue front-end electronics

9-channel digital FB processor

ATF2 Project Meeting, KEK, 14/12/09

P2 → K1 loop jitter reduction (April 16 2010)

Philip Burrows

JAI Advisory Board, RHUL 26/04/10

Jitter comparison at IP

Assuming perfect lattice, no further imperfections (!)

JAI Advisory Board, RHUL 26/04/10

Multi-Optical Transition Radiation System for ATF2

for Fast Emittance Measurement

Gonzalvo, C.Blanch, J.V.Civera, J.J.García Garrigós IFIC (CSIC-UV) D.McCormick, G.White, J. Cruz SLAC and KEK team

N.Terunuma, ICB meeting, ILC10, Beijing, 29 March.2010

A.Faus-Golfe, J.Alabau-

- 1. Most parts have been arrived at ATF.
- Two persons from IFIC visited ATF in March, 2010 and assembled the OTRs on the test stands.
- Control cables were put between the beamline and a control hut.
- One of 4 OTRs was installed in May, and 3 OTRs will be installed after IPAC10.

J. Alabau-Gonzalvo, IP Beam Size Task Force Meeting, 16 April, 2010

H/W

Summary of multi-OTR Status

Locations

Tracking	comparison	with
Win	e Scanners	

OTR0	WS0
σx:118 um	σx: 82 um
σy:9 um	σy: 11 um
ОТR1	WS1
σx:148 um	σx:157 um
σy:8 um	σy:7 um
ОТR2	WS2
өх: 92 um	σx:88 um
өу: 12 um	σy:13 um
ОТR3	WS3
σx: 144 um	ex:151 um
σy: 7 um	ey:6 um

OTR resolution = 2μ m

Multi-OTR System

December 2010: Coupling Correction

Coupling correction in the EXT achieved by scanning each of the 4 EXT skew quads. For each scan the quantity (vertical normalised emittance)*BMAGY is plotted and taken the optimal from a parabolic fit.

13-14 January

11th ATF2 Project meeting

A. Faus-Golfe (IFIC)

D. Okamoto, ATF2 Project Meeting, 14-17 December, 2009 Tilt Monitor : Prototype and tested

	Parameters measured	Design
frequency	2.8553 GHz	2.856 GHz
Loaded Q	2978	2650
Qwall	10128	10000
Qext	4220	3350
Decay time	156nsec	150nsec

Expected resolution : 30nrad

BPM-Model Response

Dispersion Correction

Before Correction

After Correction

Improved dispersion measurement using energy fluctuations reconstructed in extraction line

Y. Rénier (CERN), Jan. 2011

Higgs boson production at threshold

Proposal to run near threshold ($\sqrt{s}=230$ GeV) for a light Higgs (120GeV)

<u>Reason</u> \rightarrow Higgs mass resolution determined from Higgs-strahlung process e+e- \rightarrow HZ (Z \rightarrow μ + μ -, e+e-) with the recoil mass method:

$$m_H^2 = s + m_Z^2 - 2E_Z\sqrt{s}$$

LAL 07-03 F. Richard et al.

is the best due to

- better momentum resolution of m[±], e[±] at low energy

- larger cross section at 230GeV than at e.g. 350GeV

Comparison of Results

ZH->μμX channel Polarization: e⁻: -80% e⁺: +30%

Beam Par	$\mathcal{L}_{int} (fb^{-1})$	ϵ	S/B	$M_H (\text{GeV})$	σ (fb) $(\delta\sigma/\sigma)$
RDR 250	188	55%	62%	120.001 ± 0.043	11.63 ± 0.45 (3.9%)
RDR 350	300	51%	92%	120.010 ± 0.087	7.13 ± 0.28 (4.0%)
$\mathrm{SB2009}\ \mathrm{w/o}\ \mathrm{TF}\ 250$	55	55%	62%	120.001 ± 0.079	$11.63 \pm 0.83 \ (7.2\%)$
$\rm SB2009~w/o~TF~350$	175	51%	92%	120.010 ± 0.110	$7.13 \pm 0.37 (5.2\%)$
SB2009 w/TF 250 $$	68	55%	62%	120.001 ± 0.071	$11.63 \pm 0.75 \ (6.4\%)$
SB2009 w/TF 350 $$	250	51%	92%	120.010 ± 0.092	$7.13 \pm 0.31 \ (4.3\%)$
NB w/o TF 250	175	61%	62%	120.002 ± 0.032	$11.67 \pm 0.42 \ (3.6\%)$
NB w/o TF 350	200	52%	84%	120.003 ± 0.106	$7.09 \pm 0.35 \ (4.9\%)$
● NB w/TF 250	200	63%	59%	120.002 ± 0.029	11.68 ± 0.40 (3.4%)
NB w/TF 350	250	51%	89%	120.005 ± 0.093	7.09 ± 0.31 (4.4%)

Comparison:

- New Baseline design @ 250 GeV gives the best results: better than the RDR design

- Importance at the low energy: Even with 4 times smaller luminosity (68fb⁻¹/250fb⁻¹), SB2009 @ 250 GeV can still give better result on the Higgs mass measurement than SB2009 @ 350GeV.

- 350 GeV center of mass energy gives better signal over background (S/B)

Instrumentation preparation and R&D

- Stripline BPMs, C and S band cavity BPMs, BSM "Shintake", wire-scanners
 - → in most part commissioned and operating satisfactorily (few improvements underway)
- IP-cavity BPMs, tilt monitor, OTR profile, LW, FONT
 - → actively studied as R&D in preparation for goal 2 (and 1)
- Background monitors: PLIC optical fibre + dedicated instrumentation
 - \rightarrow simulation effort coupled to measurements needed to assess ultra low β^* feasibility

Automated IP waist scans & Twiss measurements

IPBSM Scans (alpha_y)

betaX* optimization

- When betaX*>1 cm, the effect of multpoles become weaker.
- A new lattice has be designed using MADX and MAPCLASS, namely BX2.5BY1.0.

D. Wang (IHEP), ATF2 project meeting, Jan. 2011

Compare measurement and ion trap calculation

instability observed beyond 6 bunches / train

K. Kubo (KEK), ATF2 project meeting, Jan. 2011