
DEAP V1720
Frontends and

Event Builder

Thomas Lindner | TRIUMF
MIDAS Seminar – July 2015

DEAP Multi-threaded frontends 2

Outline

• DEAP Detector

• DTM

• V1720 Digitizers

• Event Builder

DEAP Multi-threaded frontends 3

DEAP Introduction

• DEAP-3600 is liquid argon dark matter
experiment in SNOLAB, Sudbury, Ontario.

• Liquid argon vessel is imaged by array of
255 PMTs.

• From DAQ point of view, main challenges is
~3.6kHz rate of Ar-39 decays which produce
signal similar to WIMP.

– Can suppress Ar39 background offline using
pulse shape discrimination.

– But how to handle high rate online?

DEAP Multi-threaded frontends 4

DEAP Trigger Module (DTM)

• Summed signals from PMTs fed into DTM digitizer.

• Digitized signal are processed to determine whether events
are WIMP-like or background-like.

• DTM has flexible system for
deciding, event-to-event, which
digitizers to trigger.

• Also, DTM gets busy signals from
digitizers; can be used to
'throttle' rate of digitizer triggers.

Pulse shape discrimination in liquid argon
electrons vs neutrons

DEAP Multi-threaded frontends 5

V1720 Digitizers

• Use CAEN V1720 250MHz FADC digitizers: one channel per PMT.

• V1720 FADC signals are processed on-board using Zero Length
Encoding algorithm; only save sample below certain threshold (and
neighbouring samples).

• Connections to V1720 made using fibre link with CAEN A3818 PCI
card. 4 fibres per A3818,
2 V1720 per fibre.

• Each A3818 card can
handle up to ~80MB/s.

• V1720 buffers handle
1028 events; when half
full V1720 sets 'busy' signal.

PMT signal are actually shaped and
split by custom boards, as well as
being readout by slower V1740
FADCs. In this talk mostly focus
on V1720 readout.

DEAP Multi-threaded frontends 6

V1720 – Further data suppression

• Saving full ZLE for all triggered events would saturate DAQ.

• So in V1720 front-end code we apply another level of data
suppression.

• For each V1720 ZLE pulse we calculate QT (charge/time).

• For certain events (background-like, as determined by DAQ)
we only save QT and discard ZLE data.

Q/T

DEAP Multi-threaded frontends 7

V1720 Frontend Program

• Wrote multi-threaded polling V1720 frontend; each thread
handles one fibre link and calculates QTs for that link.

• Collector thread composes sub-event
and places it in MIDAS buffer.

Thread 0
- Collect ZLE data from
boards 0,1
- Calculate QT
- Place Data in ring buffer

Ring buffer 3

Ring buffer 2

Ring buffer 1

Ring buffer 0

Thread 1...

Thread 1...

Thread 1...

Collector (main thread)
- Poll on having data ready
in each ring buffer
- Place assembled sub-event
in MIDAS buffer

MIDAS buffer

DEAP Multi-threaded frontends 8

V1720 Frontend Program

• Wrote multi-threaded polling V1720 frontend; each thread
handles one fibre link and calculates QTs for that link.

• Collector thread composes sub-event
and places it in MIDAS buffer.

Thread 0
- Collect ZLE data from
boards 0,1
- Calculate QT
- Place Data in ring buffer

Ring buffer 3

Ring buffer 2

Ring buffer 1

Ring buffer 0

Thread 1...

Thread 1...

Thread 1...

Collector (main thread)
- Poll on having data ready
in each ring buffer
- Place assembled sub-event
in MIDAS buffer

MIDAS bufferBenefits of Multi-threading:
• Better throughput without lots of front-ends.
• QT calculation can be more complicated, since
there is 4X more CPU available for calculation.

DEAP Multi-threaded frontends 9

V1720 Frontend Program

• Wrote multi-threaded polling V1720 frontend; each thread
handles one fibre link and calculates QTs for that link.

• Collector thread composes sub-event
and places it in MIDAS buffer.

Thread 0
- Collect ZLE data from
boards 0,1
- Calculate QT
- Place Data in ring buffer

Ring buffer 3

Ring buffer 2

Ring buffer 1

Ring buffer 0

Thread 1...

Thread 1...

Thread 1...

Collector (main thread)
- Poll on having data ready
in each ring buffer
- Place assembled sub-event
in MIDAS buffer

MIDAS buffer
Technical point:
Thread-safe communication is
handed by making counter
atomic (C++11 feature)

DEAP Multi-threaded frontends 10

Event Builder
• Event builder implemented as

– Regular frontend program

– Constructs list of EB_FRAG frontends to
assemble

– Uses a separate thread for checking
timestamps and assembling data from
each frontend buffer.

– Collector thread polls on having data
available from each frontend.

FE Thread 0

Ring buffer 3
Ring buffer 2

Ring buffer 1
Ring buffer 0

FE Thread 1...
FE Thread 2...
FE Thread 3...

Collector 0

V1720 MIDAS
buffer 0 V1720 MIDAS

buffer 1 V1720 MIDAS
buffer 2 V1720 MIDAS

buffer 3

EB thread 0

EB ring
buffer 0 EB ring

buffer 1 EB ring
buffer 2 EB ring

buffer 3 EB thread 1
EB thread 2

EB thread 3

Event Builder
Main thread

MIDAS SYSTEM
Buffer

DEAP Multi-threaded frontends 11

DEAP Event Builder Processing Flow Example :
DTM running with all V1720 events,
prescaling V1740/VETO by factor of 3.

DTM
Buffer

V1740
Buffer

Notes:
•SN = Serial number. Each event fragment is
assigned a sequential serial number by front-end.
•Show a single V1720 buffer above, for simplicity.
But in reality there are four V1720 buffers, one per
front-end.
•Also, I'm omitting other front-ends like CALIB,
though the same concept will apply.
•Buffers are being filled asynchronously and at
different rates for each front-end. So don't expect
same number of event fragments in each buffer.

VETO
Buffer

V1740
Buffer

V1720
Buffer

SN1
SN2
SN3
SN4
SN5

SYSTEM
Buffer

SN1
SN2
SN3
SN4
SN5
SN6
SN7

SN1
SN2
SN3

SN1 SN1
SN2
SN3
SN4

DEAP Multi-threaded frontends 12

DEAP Event Builder Processing Flow Example :
DTM running with all V1720 events,
prescaling V1740/VETO by factor of 3.

DTM
Buffer

V1740
Buffer

Step 1: Check DTM event. In this case, find
that DTM triggered all the equipments.

VETO
Buffer

V1740
Buffer

V1720
Buffer

SN1

SN2
SN3
SN4
SN5

SYSTEM
Buffer

SN1
SN2
SN3
SN4
SN5
SN6
SN7

SN1
SN2
SN3

SN1 SN1
SN2
SN3
SN4

DEAP Multi-threaded frontends 13

DEAP Event Builder Processing Flow Example :
DTM running with all V1720 events,
prescaling V1740/VETO by factor of 3.

DTM
Buffer

V1740
Buffer

Step 2: Get each of the front-end fragments
from buffers. Compare timestamps; assume
they match.

VETO
Buffer

V1740
Buffer

V1720
Buffer

SN1

SN2
SN3
SN4
SN5

SYSTEM
Buffer

SN1

SN2
SN3
SN4
SN5
SN6
SN7

SN2
SN3

SN1 SN1

SN2
SN3
SN4

DEAP Multi-threaded frontends 14

DEAP Event Builder Processing Flow Example :
DTM running with all V1720 events,
prescaling V1740/VETO by factor of 3.

DTM
Buffer

V1740
Buffer

Step 3: Use QT information from V1720s to
create summed histograms for filtering
decision.

VETO
Buffer

V1740
Buffer

V1720
Buffer

SN1

SN2
SN3
SN4
SN5

SYSTEM
Buffer

SN1

SN2
SN3
SN4
SN5
SN6
SN7

SN2
SN3

SN1 SN1

SN2
SN3
SN4

DEAP Multi-threaded frontends 15

DEAP Event Builder Processing Flow Example :
DTM running with all V1720 events,
prescaling V1740/VETO by factor of 3.

DTM
Buffer

V1740
Buffer

Step 4: Make filtering decision; in this case, assume we keep all
information. Compose final event.

Note: we don't actual store the 'serial number' for each fragment in
the final event. There is just a single serial number for the final
event. I only show the individual serial numbers here so it is clear
how the fragments are getting assembled

VETO
Buffer

V1740
Buffer

V1720
Buffer

SN1

SN2
SN3
SN4
SN5

SYSTEM
Buffer

SN1

SN2
SN3
SN4
SN5
SN6
SN7

SN2
SN3

SN1SN1

SN2
SN3
SN4

SN1SN1SN1SN1

DEAP Multi-threaded frontends 16

DEAP Event Builder Processing Flow Example :
DTM running with all V1720 events,
prescaling V1740/VETO by factor of 3.

DTM
Buffer

V1740
Buffer

Next event: same sequence as last time, except
that in this case the DTM only triggered the
V1720s. So we only take the fragments from
the DTM and V1720 buffers.

VETO
Buffer

V1740
Buffer

V1720
Buffer

SN2

SN3
SN4
SN5

SYSTEM
Buffer

SN2

SN3
SN4
SN5
SN6
SN7

SN2
SN3

SN2
SN3
SN4

SN1SN1SN1SN1

SN2SN2

DEAP Multi-threaded frontends 17

DEAP Event Builder Processing Flow Example :
DTM running with all V1720 events,
prescaling V1740/VETO by factor of 3.

DTM
Buffer

V1740
Buffer

Third event: same again...

VETO
Buffer

V1740
Buffer

V1720
Buffer

SN3

SN4
SN5

SYSTEM
Buffer

SN3

SN4
SN5
SN6
SN7

SN2
SN3

SN2
SN3
SN4

SN1SN1SN1SN1

SN2SN2

SN3SN3

DEAP Multi-threaded frontends 18

DEAP Event Builder Processing Flow Example :
DTM running with all V1720 events,
prescaling V1740/VETO by factor of 3.

DTM
Buffer

V1740
Buffer

Fourth DTM event: now we need all the
equipment again.

VETO
Buffer

V1740
Buffer

V1720
Buffer

SN4

SN5

SYSTEM
Buffer

SN4

SN5
SN6
SN7

SN2

SN3

SN2

SN3
SN4

SN1SN1SN1SN1

SN2SN2

SN3SN3

SN4SN4SN2SN2

DEAP Multi-threaded frontends 19

DEAP Event Builder Processing Flow Example :
DTM running with all V1720 events,
prescaling V1740/VETO by factor of 3.

DTM
Buffer

V1740
Buffer

And so on...

Of course we are also adding event fragments
to the front-end buffers asynchronously as the
event handlers removes event fragments from
those buffers...

VETO
Buffer

V1740
Buffer

V1720
Buffer

SN5

SYSTEM
Buffer

SN5
SN6
SN7

SN3 SN3
SN4

SN1SN1SN1SN1

SN2SN2

SN3SN3

SN4SN4SN2SN2
SN6
SN7

SN8
SN5

DEAP Multi-threaded frontends 20

Event Builder Performance

FE Thread 0

Ring buffer 3
Ring buffer 2

Ring buffer 1
Ring buffer 0

FE Thread 1...
FE Thread 1...
FE Thread 1...

Collector 0

V1720 MIDAS
buffer 0 V1720 MIDAS

buffer 1 V1720 MIDAS
buffer 2 V1720 MIDAS

buffer 3

EB thread 0

EB ring
buffer 0 EB ring

buffer 1 EB ring
buffer 2 EB ring

buffer 3 EB thread 0
EB thread 0

EB thread 0

Event Builder
Main thread

MIDAS SYSTEM
Buffer

• There is a total of five
levels of buffers in
system
• Total amount of data in
buffers is ~9GB.

DEAP Multi-threaded frontends 21

Event Builder Performance

FE Thread 0

Ring buffer 3
Ring buffer 2

Ring buffer 1
Ring buffer 0

FE Thread 1...
FE Thread 2...
FE Thread 3...

Collector 0

V1720 MIDAS
buffer 0 V1720 MIDAS

buffer 1 V1720 MIDAS
buffer 2 V1720 MIDAS

buffer 3

EB thread 0

EB ring
buffer 0 EB ring

buffer 1 EB ring
buffer 2 EB ring

buffer 3 EB thread 0
EB thread 0

EB thread 0

Event Builder
Main thread

MIDAS SYSTEM
Buffer

• Maximum data rate for system is ~350MB/s (limited
by disk write speed).
• When mlogger falls behind, MIDAS system buffer
fills; then other levels of buffers will fill up.
• Eventually buffers on V1720 will fill, then will start
sending busy signals to the DTM, which then 'throttles'
triggers to digitizers.
• So system cleanly handles case of disk limited writing.
• However, clearing out all data at end of run is
challenge.

Note: high throughput data taking
is only needed for calibration.
Data rate for physics trigger will
be lower.

DEAP Multi-threaded frontends 22

Event Builder:
Data Throughput

• Results can be difficult to interpret, as system evolves over
first couple minutes of data taking.

• But stable operation possible in the maximize data rate mode.

DEAP Multi-threaded frontends 23

Conclusion

• Use multi-threading for DEAP frontends and event builder in
order to maximize throughput and available CPU for data
processing.

• DAQ is working and shown to be (reasonably) stable with high
data throughput and variable trigger conditions.

• All code available for inspection here:
https://bitbucket.org/ttriumfdaq/deap/src/

https://bitbucket.org/ttriumfdaq/deap/src/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

