MR Upgrade and Power Management

Y. Morita KEK/J-PARC

Proton Driver Efficiency Workshop Paul Scherrer Institut Feb. 29 – Mar. 2 2016

Contents

- Overview of MR Upgrade
- Magnet Power Supply
- High Gradient Accelerating Cavity
- Summary

Contents

- Overview of MR Upgrade
- Magnet Power Supply
- High Gradient Accelerating Cavity
- Summary

J-PARC Main Ring (MR)

Acceleration: 3 GeV to 30 GeV Circumference: 1570 m 3 insertion sections 8 bunches in one cycle 2 experimental halls (Neutrino, Hadron)

In order to achieve the MR beam power of 750 kW,

the scheme of Increasing Repetition Rate is adopted.

Main components to be upgraded

Contents

- Overview of MR Upgrade
- Magnet Power Supply
- High Gradient Accelerating Cavity
- Summary

Issues on high repetition rate operation

1. High Output Voltage

 $V_{out} =$

Output voltage for Inductive Load

Solution

Developing new PS consisting of several PS units in series

RI

<u>1.3 sec cycle</u>

Not allowed by electric power company

Solution

Installing energy storage system

List of MR Main Magnets and PSs

	_	Power Supply	Total Inductance at 30 GeV [H]	Flat Base Current [A]	Flat Top Current [A]	Output Voltage [kV] 2.5 sec / 1 sec
	B Magnets	BM1~6	1.47	190	1570	2.6 / 5.8
		QFN	2.93	86	710	2.7 / 5.6
Large _	 O Magnets	QDN	3.46	86	710	3.1 / 6.7
PS	at Arc Sections	QFX	2.39	88	730	2.6 / 4.8
		QDX	1.75	86	710	1.6 / 3.4
	\square	QFR	0.57	77	640	0.5 / 1.3
		QDR	0.44	75	620	0.4 / 0.7
	Q Magnets	QFP	0.20	77	640	0.3 / 0.4
	at Linear Sectio	ns QFS	0.30	81	670	0.3 / 0.5
Small _ PS		QDS	0.35	110	890	0.5 / 0.9
		QFT	0.32	95	780	0.4 / 0.7
		QDT	0.37	90	750	0.4 / 0.7
	S Magnets	SFA	0.42	23	200	0.3 / 0.4
		SDA	0.41	19	160	0.2 / 0.3
		SDB	0.41	19	160	0.2 / 0.3

Required Performance of PS for MR Main Magnets (e.g. single B magnet family)

	Cycle [sec]	Output Current [A]	Output Voltage [kV]	Output Power [MW]
Present	2.48	1600	3	5
High repetition	1.3	1600	~ 6	~ 10

Schemes for Energy Storage

Capacitor bank and Flywheel

Capacitor Bank : Large capacitor is required. Flywheel : Large transformers, Flywheel system, and large rectifiers are required.

Total cost of capacitor bank is expected to be less than that of flywheel.

The capacitor bank scheme was adopted based on the recommendation in the PS review committee meeting held in 2014.

Example of Capacitor Bank

CERN proton synchrotron

Capacitor banks to store energy from magnets.

Dry-type film capacitors are installed in the containers.

B magnets are the largest

List of MR Main Magnets and PSs

Capacitor banks for the BMPSs are indispensable.		Power Supply	Total Inductance at 30 GeV [H]	Flat Base Current [A]	Flat Top Current [A]	Output Voltage [kV] 2.5 sec / 1 sec
Large PS	B Magnets	BM1~6	1.47	190	1570	2.6 / 5.8
		QFN	2.93	86	710	2.7 / 5.6
	☐ Q Magnets	QDN	3.46	86	710	3.1 / 6.7
	at Arc Sections	QFX	2.39	88	730	2.6 / 4.8
		QDX	1.75	86	710	1.6 / 3.4
	$\left[\right]$	QFR	0.57	77	640	0.5 / 1.3
	Q Magnets at Linear Sectio	QDR	0.44	75	620	0.4 / 0.7
		QFP	0.20	77	640	0.3 / 0.4
		ns QFS	0.30	81	670	0.3 / 0.5
Small		QDS	0.35	110	890	0.5 / 0.9
PS		QFT	0.32	95	780	0.4 / 0.7
		QDT	0.37	90	750	0.4 / 0.7
	S Magnets	SFA	0.42	23	200	0.3 / 0.4
		SDA	0.41	19	160	0.2 / 0.3
		SDB	0.41	19	160	0.2 / 0.3

1.3 sec cycle

w/o Capacitor Bank: $\sim \Delta 140$ MW

w/ Capacitor Bank: Keep the Present Value

Design of Large PS

- Six PS units are connected in series to realize sufficient withstand voltage.

-Capacitor bank for energy storage

-Capacitor banks are installed in containers

- Symmetrical circuit for common mode rejection.

Test with Manufacturer

Test Result

We have succeeded

①Energy transfer control between the capacitor bank and magnets

(2)Correction of the current deviation

Control method has been established with the real scale PS components.

 $[\]Delta I/I_{top} = 3 \times 10^{-5}$ @ 1.5 kHz (SW)

Capacitor for Energy Storage

The capacitor should

have longer than 10 years lifetime ($\sim 10^8$ charge-discharge cycles) not be shorted internally (for safety)

Self-Healing (SH) structure

- 1. Many small pixel capacitors connect with each other
- 2. A pixel capacitor with weak part is isolated by over current
- 3. As a result, the capacitance decreases by 1/10000

Prevention of huge short-circuit current

Capacitor Unit

prototype

Design of Capacitor Bank

- Single capacitor bank consists of 24 capacitor units (96 capacitors) connected in parallel.
- 2 capacitor banks are installed in a 40 ft container.

Contents

- Overview of MR Upgrade
- Magnet Power Supply
- High Gradient Accelerating Cavity
- Summary

Present cavity

High gradient cavity

Core material	FT-3M
Voltage / gap [kV]	~15
Gaps / cavity	3
Accelerating gradient [kV/m]	~25
Resonance frequency [MHz]	1.72
Cooling	Water
Power Loss [kW]	~220

Core material	FT-3L
Voltage / gap [kV]	~15
Gaps / cavity	5, 4
Accelerating gradient [kV/m]	~30
Resonance frequency [MHz]	1.72
Cooling	Water
Power Loss [kW]	~180 (5-GAP), ~140 (4-GAP)

FINEMET (Nanocrystalline Fe-based Soft Magnetic Material)

Hitachi Metals, Ltd.

FINEMET Core Production

Core Loss Reduction				
	Shunt impedance [Ω /gap]	Loss per gap [kW/gap]		
Cavity with FT-3M	1100	~72		
Cavity with FT-3L	2000	~36		

FINEMET (Nanocrystalline Fe-based Soft Magnetic Material)

Hitachi Metals, Ltd.

FINEMET Core Production

Core Loss Reduction			
	Shunt impedance [Ω /gap]	Loss per gap [kW/gap]	
Cavity with FT-3M	1100	~72	
Cavity with FT-3L	2000	~36	

C. Ohmori, IPAC2015

5-GAP accelerating cavity

Magnet to produce external B field

FT-3L core

Upgrade of RF system

Maximum accelerating voltage per turn will be increased from 280 kV to 560 kV.

Increase the number of cavities in the limited space.

Normal operation: 13 kV/gap x 21 gaps = 280 kV

Upgrade of RF system

Maximum accelerating voltage per turn will be increased from 280 kV to 560 kV.

Increase the number of cavities in the limited space.

Normal operation: 14 kV/gap x 20 gaps = 280 kV

Upgrade of RF system

Maximum accelerating voltage per turn will be increased from 280 kV to 560 kV.

Increase the number of cavities in the limited space.

Normal operation: 13 kV/gap x 43 gaps = 560 kV

Power loss of present cavity and high gradient cavity

To achieve 560 kV per turn, ~43 gaps are required.

	Present cavity	High gradient cavity
Core material	FT-3M	FT-3L
Accelerating Voltage / gap [kV]	~15	~15
Number of gaps	45 (*15 cavities)	43 (9 cavities)
Power loss / gap [kW]	~72	~36
Total power loss [kW]	~3200	~1600
	1/2	

*15 cavities can not be installed in the limited space.

In the case of FT-3M cavity, additional power supplies are also required.

Contents

- Overview of MR Upgrade
- Magnet Power Supply
- High Gradient Accelerating Cavity
- Summary

Summary

High repetition rate scheme is adopted to increase beam power of J-PARC MR.

 $2.48s \rightarrow 1.3s$

Magnet power supply and RF accelerating cavity are main components to be upgraded.

