Intensity Frontier Particle Physics

K.Kirch, ETH Zurich – PSI Villigen, Switzerland

Need: High intensities

Perform:

- Precision measurements
- Searches and Symmetry Tests

The Standard Model of Particle Physics

is extremely successful ...

(with some issues concerning neutrino masses, muon g-2, B-decays, ...)

... but does not explain

- Gravity, Dark matter
- Dark energy
- 3 families
- QCD theta term
- Values and structure of particle masses and couplings
- Baryon Asymmetry of the Universe
- Conservation of baryon and charged lepton number

Intensity Frontier Particle Physics

- Has a very large and diverse community
- Besides particle physics it has strong connections to other fields, especially to nuclear and atomic physics
- It can be performed at high and at low energies, w and w/o accelerators, at electron and at proton machines:

High power proton drivers have arguably the largest impact

Examples of recent community efforts in Europe and the US:

Fundamental Physics at the Intensity Frontier

Flavour physics of leptons and dipole moments * Working Group 3 of the CERN Workshop "Flavour in the era of the LHC"

Workshop held December 2011 in Rockville, MD

arXiv:1205.2671

arXiv:0801.1826

A few recent and not so recent excitements

0.92

0.9

Proton charge radius R_{ch} [fm]

0.4

e-p, Mainz

0.88

H/D

0.45

Sick & Arrington, 2015

R(D*)

Intensity and Energy Frontiers

Maxim Pospelov's version:

LHC can realistically pick up New Physics with $\alpha_X \sim \alpha_{SM}$, and $m_X \sim 1$ TeV, while having no success with $\alpha_X < 10^{-6}$, and $m_X \sim \text{GeV}$.

5

Very high energy example

GUT scale physics

proton decay

intensity frontier neutrino detectors

nnbar oscillations

dedicated experiment

Multi-TeV example

a large host of low energy observables can probe squarks and sleptons with masses far above the direct reach of current and future colliders

Wolfgang Altmannshofer

Altmannshofer, Harnik, Zupan, arxiv1308.3653

Sub-GeV example

PHILIP ILTEN, JESSE THALER, MIKE WILLIAMS, and WEI XUE

ETH

Ultra-low energy example

9

Intensity Frontier Particle Physics

- Many if not most precision measurements and searches need the highest possible intensities
- Indirect tests are extremely powerful, both, in absence of direct detection or complementing it
- New particles could be very heavy or very light, could couple strongly or very weakly ...

– need to check at many places!

– need highest intensity proton drivers!

In this talk:

- selected examples of intensity frontier physics at powerful proton drivers
- Muons: PSI, J-PARC, FNAL
 - MEG, Mu3e, COMET, Mu2e, g-2
- Neutrons: SNS, PSI, TRIUMF, ESS (& competing reactor sources)
 - npdg, Nab, nEDM, nnbar
- Antiprotons: CERN

Kaons: CERN, J-PARC

Hbar

Apologies to the many important experiments not covered here

Exotics

- Neutrinos, p-decay, ...: J-PARC, T2K, HyperK, FNAL, NOvA, DUNE (&reactors and natural sources)
- Rare Isotopes: TRIUMF, CERN,
- Higgs, B, HE fixed target: CERN, ...

Antiproton and Antihydrogen physics at CERN's AD and ELENA

Aiming at

- Precision tests of CPT
 - comparison of the p and pbar mass, magnetic moment, ...
 - Test of charge equality
 - comparison of spectroscopy of H and Hbar
- Test of antimatter gravity

AEgIS, ALPHA, ASACUSA, ATRAP, BASE, GBAR

Fundamental Neutron Physics at the Spallation Neutron Source

The Fundamental Neutron Physics program at the SNS has three major themes:

- 1. The study of Hadronic Parity Violation in simple nuclei
- 2. Measurement of correlations in neutron beta decay
- 3. Search for a neutron electric dipole moment

Hadronic Parity Violation in simple nuclei

Direct W^{+,-} or Z⁰ is highly suppressed by range heavy boson. Look instead for PV interference term from meson exchange.

Example: PV in $n+p \rightarrow d+\gamma$

Status: Data collection complete, statistics at <2x10⁻⁸

Determination of correlations "a" and "b" in neutron decay

$$dw \propto \rho(E_{e}) \cdot (1+2|\lambda|^{2}) \cdot \{1 + 0 \frac{\vec{p}_{e} \cdot \vec{p}_{v}}{E_{e}E_{v}} + 0 \frac{m_{e}}{E_{e}} + \vec{\sigma}_{n} \cdot (A \frac{\vec{p}_{e}}{E_{e}} + B \frac{\vec{p}_{v}}{E_{v}} + D \frac{\vec{p}_{e} \times \vec{p}_{v}}{E_{e}E_{v}})\}$$

Determine "a" by measurement of complete kinematics in unpolarized neutron decay.

Status: Installation at SNS in summer 2016

Search for neutron electric dipole moment

Fully cryogenic experiment using in-situ production of UCN within measurement volume and incorporating ³He co-magnetometry

Status: Design on individual subsystems in progress Installation at SNS planned for 2019

NNbar @ ESS

Baryon Number Violation at the core of our existence
 Physics of Baryon Number Violation of utmost importance

- Standard Model tells us about interactions
 - But nothing about nature of quarks and leptons
- Standard Model is now complete
 - Understanding fermions is our biggest gap
 - Grand Unification our best hint
- Baryon Number Violation excellent probe
 - We know it exists
 - Observation will tell us about mechanism, and Grand Unification (and maybe neutrinos)
- ESS + modern neutron guiding technology allows to push sensitivity to free neutron oscillation probability by ~1000 wrt 1990's ILL experiment
- Opportunities to gain a factor 1000 in sensitivity to processes at core of our existence and understanding of universe are rare
 - Should <u>not</u> be squandered

L ~ 200 m

ESS, June 5, 2015

- 2014: ESS Construction Start
- 2018: Technical Design Report
- 2020: Construction start
- 2019-2022: ESS initial phase: commissioning, intensity ramp, experiments by "friendly" users
 - Experiment construction, commissioning, physics start
- 2023-2025: ESS Initial user program: reliable operations with public users; establish basis for future cost sharing
 - Physics run
- 2026+: ESS routine operations, completion of final public instruments
 - End run ~2026, complete data analysis; (if see signal have a big party

Blue: ESS Green: NNbar

TI.

Neutron Beam EDM

Piegsa, PRC 88, 045502 (2013)

- Unique, complementary and novel approach: ideal for ESS
- Ramsey neutron beam-type experiment, sensitivity ~1E-27ecm
- Directly measures main systematic false effect (v×E)
- Proof-of-principle planned for PSI and ILL

2 Neutron beams E > 50 kV/cm $B_0 = 200 \mu\text{T}$ L = 5 m (proof-of-prin.)L = 50 m (full-scale)

Ultracold Neutron Source & Facility

Towards new limits and beyond Neutron EDM search at PSI

Charged Lepton Flavor Violation is small in the Standard Model

- Only known LFV so far: neutrino mixing
- cLFV suppressed by $(\delta m_{\rm M}/m_{\rm W})^4$ and thus smaller than 10⁻⁵⁰ \rightarrow SM not observable \rightarrow accidentally small !?
- Plenty of room for new physics

Expect from SM: $BR(\mu - e\gamma) < 10^{-50}$ **Experimentally so far:** < 5.7 x 10⁻¹³

PRL110(2013)201801

cLFV Searches: Current Situation

cLFV Searches: next steps

 $\mu^+ \rightarrow e^+ + \gamma$ to 4×10^{-14} with MEG II at PSI

 $\mu^+ \rightarrow e^+ ee$ to 10⁻¹⁵ and 10⁻¹⁶ with Mu3e at PSI

■ $\mu^- \rightarrow e^-$ conversion to $10^{-14} \dots 10^{-16..17}$ and beyond with DeeMe, COMET at J-PARC and Mu2e at FNAL

MEGII Status

Key elements:

- Higher beam intensity
- Higher detector efficiency and resolution
- Improved calibration methods
- New DAQ system

2013	2014	2015	2016	2017-20
Design	Construction	PreEng Run	Eng. Run	Run

Sensitivity [2017-20] ~ 4 x 10⁻¹⁴

Mu3e Status

Key elements:

- Staged approach (here only phase I up to 10⁸ muons/s)
- Impressive momentum resolutions
- Good timing also with minimal amount of material

2013-5	2015	7	2017	2018-20
Design	Construction		Eng Run	Run

Sensitivity phase I [2018-20] ~ 10⁻¹⁵ (Final Sensitivity phase II [202x] ~ 10⁻¹⁶)

Mu2e experiment

Designed to maximize signal acceptance and remove backgrounds

Mu2e Proton Beam line - Fermilab

- Mu2e makes use of existing infrastructure at Fermilab
- Mu2e uses 8 kW of protons
 - From the Booster (8 GeV)
 - Re-bunched in the Recycler
 - Slow-spill from Delivery Ring
 - aka Accumulator/Debuncher for Tevatron anti-protons
 - Revolution period 1695 ns
- Mu2e can (and will) run simultaneously with NOvA
- Commissioning 2020

COMET Phase I

- Phase I
 - Beam background study and achieving an intermediate sensitivity of <10⁻¹⁴
 - 8GeV, ~3.2kW, ~90 days of DAQ
- Phase II
 - 8GeV, ~56 kW, 1 year DAQ to achieve the COMET final goal of < 10⁻¹⁶ sensitivity

COMET Status

- Construction of Hadron South Exp. Building (completed in JFY 2014)
- Construction of new primary beam line

 Strong support by the hadron beam line group
- Construction of pion/muon capture (in progress) & transport solenoid magnets (completed in JFY2014)
 - High field / high radiation tolerance
- Development and construction of detectors, Radiation tolerance test of detector components (in progress)
- Submission of Technical Design Report to J-PARC PAC (in Oct. 2014)

Capture Solenoid Coil Winding

DeeMe: Search for µ-e Conversion

- IMSS/Muon PAC: Stage-2 Approved
- J-PARC/RCS: High-Power High-Purity Pulsed Proton Beam.
- Production Target as μ-stopping target.
- H-Line/MLF: Large-Acceptance Beam line.
- State-of-the-Art MWPC Technology
- S.E.S. BR~5 x 10⁻¹⁵ (8 x 10⁷ sec of data taking with SiC target)
- Start the physics run with graphite target
 - S.E.S. 1 x 10⁻¹³ (2 x 10⁷ sec)
- Aiming to start the engineering run in **2015**.

Magnet leased from TRIUMF is waiting for the installation at MLF

Tension between Theory and Experiment

$$\vec{\mu}_s = g_s \left(\frac{en}{2m}\right) \vec{s}$$
$$g = 2(1+a)$$
$$\omega_a = \omega_S - \omega_C = a \frac{qB}{m}$$
$$\times 10^{-11}$$

(at)

 $a_{\mu}^{exp} 116\,592\,091(54)_{st}(33)_{sy}(63)_{tot} > 0.000$

 $\Delta^{(today)} = (288 \pm 80) \times 10^{-11}$

Difference is between 3 to 4 σ , depending on the value of the strong interaction contribution used.

	Value (× 10^{-11}) units
QED $(\gamma + \ell)$	$116584718.951\pm0.022\pm0.077_{\alpha}$
$HVP(lo)^*$	6923 ± 42
$HVP(lo)^*$	6949 ± 43
HVP(ho)	-98.4 ± 0.7
H-LBL	105 ± 26
EW	$154 \pm 1 \pm 2$
Total SM	$116591803 \pm 42_{\text{H-LO}} \pm 26_{\text{H-HO}} \pm 2_{\text{other}} (\pm 49_{\text{tot}})$
Total SM	$116591828 \pm 43_{\text{H-LO}} \pm 26_{\text{H-HO}} \pm 2_{\text{other}}(\pm 50_{\text{tot}})$

Outlook for Fermilab Experiment E989

- Goal, factor of 4 improvement on total error.
- Theory is also improving, factor of 2 possible
- Magnet shimming underway
- Beamlines are under construction
- Detectors under construction
 - -24.6×9 PbF2 segmented calorimeters read out by SiPMs
 - 3 tracker arrays that go inside the vacuum chamber
- Systems being refurbished:
 - Vacuum chambers, electrostatic quadrupoles
- New fast muon kicker under development
- First beam on the pion production target in March 2017
- First muons stored May 2017
- Engineering run \rightarrow BNL level data set by fall 2017
- Two years of data collection to follow

Expected future comparison between theory and experiment

Error	Dav	Hag	Future
δa_{μ}^{SM}	49	50	35
δa_{μ}^{HLO}	42	43	26
$\delta a_{\mu}^{\dot{HLbL}}$	26	26	25
$\delta(a_{\mu}^{EXP} - a_{\mu}^{SM})$	80	80	40

$$\delta a_{\mu}^{EXP} = 16 \times 10^{-11}$$

 $\Delta^{(today)} = (288 \pm 80) \times 10^{-11}$

arXiv:1407.4021v2 [hep-ph] 21 Jul 2014

JPARC muon g-2

CERN III, BNL, FNAL all use 3.1 GeV muons

'magic' momentum that cancels effects from the E fields required to store the muon beam

Requires a larger ring-> hard to meet uniformity goals

JPARC experiment uses ~300 MeV muons. Allows for a much smaller ring

Order of magnitude improvement in field quality 'out of the box' with an MRI magnet

Expect to be competitive with FNAL but on a longer time frame

The intensity frontier at PSI: π , μ , UCN

Precision experiments with the lightest unstable particles of their kind

Swiss national laboratory with strong international collaborations

HIMB Project : 10¹⁰ µ⁺/s below 30 MeV/c

The muCool project: an ultra-bright LE μ^+ beam compressing phase space by 10 orders of magnitude while loosing only 3 orders in intensity

Will enable

- new M experiments
 - spectroscopy
 - gravity
- new g-2 / EDM
- new μSR techniques

D. Taqqu, PRL 97, 194801 (2006)

Y. Bao et al., PRL 112, 224801 (2014)

G. Wichmann et al, NIM A 814, 33-38 (2016)

PSI Particle physics organizes in 2016

www.psi.ch/particle-zuoz-school

www.psi.ch/psi2016

PSI 2016

v.psi.ch/psi20

4th Workshop on the Physics of fundamental Symmetries and Interactions at low energies and the precision frontier Oct. 17-20, 2016 Paul Scherrer Institute Switzerland

PSI Summer School

Exothiggs

Lyceum Alpinum, Zuoz, August 14-20, 2016

Topics:

- . Low energy precision tests of the Standard Model Fundamental physics and precision experiments with muons.
- pions, neutrons, antiprotons, and other particles
- · Searches for permanent electric dipole moments
- · Searches for symmetry violations and new forces
- Precision measurements of fundamental constants
- Exotic atoms and molecules
- Precision magnetometry
- Advanced muon and ultracold neutron sources Advanced detector technologies

International	Advisory	Committee

. Baldini	INFN & U. Pisa	H. Shimizu	Nagoya Univ.	
. Bryman	Univ. British Columbia	A. Weis	Univ. Fribourg	
.W. Filippone	CALTECH	E. Widmann	SMI - Vienna	
Jungmann	Univ. Groningen	O. Zimmer	ILL	
Kammel	Univ. Washington			
Khriplovich	BINP			
A. Kostelecky	Indiana Univ.	Organizing Committee		
Kuno	Osaka Univ.	K. Kirch	ETHZ & PS	
V.J. Marciano	BNL	B. Lauss	PS	
Mori	Univ. Tokyo	S. Ritt	PS	
A. Pohl	Univ. Geneva	A. Signer	PSI & Univ. Zurich	
. Roberts	Boston Univ.	A. Van Loon	Govaerts PS	

August 14 – 20, 2016

October 17 – 20, 2016

Communications and input gratefully acknowledged:

- Naohito Saito
- Bob Tschirhart
- Jim Miller
- Doug Glenzinski
- Brendan Casey
- Lee Roberts
- Michael Doser
- Geoff Greene

 \bullet

- Gustaaf Brooijmans
- Florian Piegsa
- Aldo Antognini
- Stefan Ritt
- Andreas Knecht
- Andreas Eggenberger

Thank you!

Picture: K. Schuhmann