

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Protor Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

Neutrino Production with Proton Drivers Proton Driver Efficiency Workshop, Feb 29-Mar 2, 2016, PSI

Mary Bishai Brookhaven National Laboratory

February 29, 2016

Outline

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Protor Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

1 Introduction

2 Neutrinos from Proton Drivers

4 Focusing Designs

5 Multi-MW Beamline Designs

6 Summary and Conclusions

Sources of Neutrinos

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

 $\sim 1~{
m GeV}$ few/cm $^2/{
m s}$

1-20 GeV TeV-PeV 10⁵/cm²/s/MW (at 1km) varies

3 / 38

BROOKHAVEN Oscillations of $u_{\mu} ightarrow u_{e}$ at different baselines

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Protor Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

BROOKHAVEN Oscillations of $u_{\mu} ightarrow u_{e}$ at different baselines

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

for $\Delta m_{31}^2 = 2.4 \times 10^{-3} \text{ eV}^2$

6 / 38

ROOKHAVEN Neutrino fluxes with perfect focusing

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

ν_{μ} fluxes from pion decay-in-flight (DIF) beams assuming perfect focusing and charge selection:

120 GeV, decay channel lengths from 200m to 1km

Flux at 1000km, perfect focusing, different decay pipe lengths

Gain with longer decay channels, BUT excavation is challenging/expensive

RECOKENVEN Neutrino fluxes with perfect focusing

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions ν_{μ} fluxes from pion decay-in-flight (DIF) beams assuming perfect focusing and charge selection:

Lower energy flux for benefits at lower P beam energy BUT only at constant power = more protons.

ROOKHAVEN Neutrino fluxes with perfect focusing

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

 $\bar{\nu}/\nu$ fluxes are more favorable at higher proton beam energies.

NEN Expected Appearance Signal Event Rates

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions The total number of electron neutrino appearance events expected for a given exposure from a muon neutrino source as a function of baseline is given as

$$N_{\nu_e}^{\text{appear}}(\textit{L}) = N_{\text{target}} \int \Phi^{\nu_{\mu}}(\textit{E}_{\nu},\textit{L}) \times P^{\nu_{\mu} \rightarrow \nu_e}(\textit{E}_{\nu},\textit{L}) \times \sigma^{\nu_e}(\textit{E}_{\nu}) d\textit{E}_{\nu}$$

Assume the neutrino beam source produces a wide coverage that is flat in energy in the oscillation region and approximate the probability with the dominant term for $P(\nu_{\mu} \rightarrow \nu_{e})$

$$\Phi^{\nu\mu}(E_{\nu}, L) \approx \frac{C}{L^{2}}, \ C = \text{number of } \nu_{\mu}/\text{m}^{2}/\text{GeV}//\text{MW/yr at 1 km}$$

$$P^{\nu\mu \to \nu_{e}}(E_{\nu}, L) \approx \underbrace{\frac{\sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}(1.27\Delta m_{31}^{2}L/E_{\nu})}{P_{0}}}_{P_{0}}$$

$$\sigma^{\nu_{e}}(E_{\nu}) = 0.7 \times 10^{-42}(\text{m}^{2}/\text{GeV}/\text{N}) \times E_{\nu}, \ E_{\nu} > 1 \text{ GeV}$$

$$N_{\text{target}} = 6.022 \times 10^{32} \text{N/kt}$$

Assuming constant flux: $C \approx 1.2 \times 10^{17} \ \nu_{\mu}/{\rm m}^2/{\rm GeV}/({\rm MW/yr})$ at 1 km:

$$N_{\nu_e}^{\mathrm{appear}}(L) \approx (2 \times 10^6 \mathrm{events}/(\mathrm{kt/MW/yr}))(\mathrm{km/GeV})^2 \times \int_{x_0}^{x_1} \frac{\sin^2(ax)}{x^3} dx,$$

 $x \equiv L/E_{\nu}, a \equiv 1.27 \Delta m_{31}^2.$

For $x_0 = 100 \text{ km/GeV}$ and $x_1 = 2000 \text{ km/GeV}$ (1st and 2nd oscillation maxima)

 $N_{\nu_e}^{\text{appear}}(L) \sim \mathcal{O}(20) \text{ events}/(\text{kt/MW/yr})$ constant for L > 300 km in vacuum!

Event Rates vs. Baseline Perfect Focusing

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

$$\mathcal{R} = \int \Phi_{\text{perfect}}^{\nu_{\mu}}(E_{\nu}) \times \sigma(E_{\nu}) \times P(\nu_{\mu} \to \nu_{e}) \ dE_{\nu} \\ (\sin^{2} 2\theta_{13} = 0.09, \sin^{2} \theta_{23} = 0.5, \delta_{cp} = 0, |\Delta m_{31}^{2}| = 2.4 \times 10^{-3}) \\ \text{Flux: 120 GeV, perfect focusing, } \sim 400\text{m decay channel, on-axis} \\ \text{Normal Hierarchy}$$

Appearance rates versus baseline

How well can we focus/collect the pions?

BROOKHAVEN Neutrino Factories/Muon Storage Rings

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

How many μ/p^+ can be collected?

State-of-the-art from mu2e is $\mathcal{O}(10^{-3})$ at 8 GeV

Moutrino Factories/Muon Storage Rings

Optimization of NF Baseline and μ Energy (P.A. Huber)

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

Using MIND (Magnetized Iron Neutrino Detector) and a single baseline:

The optimal range is 1400-2600km for E_{μ} from 7 - 15 GeV.

Superbeams vs Neutrino Factories

From A. Blondel et. al. NIM A 451 (2000) 102-122

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

	Conventional	Neutrino factory
Parents	π^+ , K ⁺ or π^- , K ⁻	μ^- or μ^+
v_{μ} beam	ν _μ	$v_{\mu}: \bar{v}_{e} = 1:1$
Background	~ 2% of $\bar{\nu}_{\mu}$, ~ 1% of ν_{e}	none
$\bar{\nu}_{\mu}$ beam	\bar{v}_{μ}	$\bar{\nu}_{\mu}: \nu_{e} = 1:1$
Background	~ 6% of v_{μ} , ~ 0.5% of \bar{v}_{e}	none
$\Delta E/E$ of neutrino energy	<u>± 10%</u>	< 1%
$\Delta R/R$ of neutrino radius	<u>± 10%</u>	< 1%
Neutrino flux uncertainty	<u>± 10%</u>	< 1%
v_{μ}/cm^2	3×10^{7}	3×10^{9}
per year at 732 km	for 4.5×10^{19}	for 10 ²¹ injected
	400 GeV/c p.o.t.	50 GeV/c u

Neutrino factories technologically challenging.

Muon storage rings only viable for short baseline.

Neutrino Event Rates - Various Experiments

Neutrino Production with Proton Drivers

Neutrinos from Proton Drivers

	Super	Beams		
Experiment	Baseline	$ u_{\mu} ightarrow u_{\mu}$	$ u_{\mu} ightarrow u_{ au}$	$ u_{\mu} ightarrow u$
Т2К	295km (off-axis)			
30 GeV, 750 kW				
$9 imes 10^{20}$ POT/year		900	< 1	40 - 70
MINOS LE	735km			
120 GeV, 700 kW				
6×10^{20} POT/year		11,000	115	230-340
NOνA	810km (off-axis)			
120 GeV, 700 kW				
$6 imes 10^{20}$ POT/year		1500	10	120 - 200
LBNE (LBNF) LE	1,300km			
80 GeV, 1.2MW				
$1.5 imes 10^{21}$ POT/year		4300	160	350 - 600
LBNE (LBNF) ME	1,300km			
80 GeV, 1.2MW				
$1.5 imes 10^{21}$ POT/year		12,000	690	290 - 430
	ν Factory a	at Fermilab		
Experiment	Baseline	$ u_{\mu} ightarrow u_{\mu}$	$ u_{\mu} ightarrow u_{ au}$	$\nu_e \rightarrow \nu_p$
NuMAX I	1,300km			
3 GeV, 1MW				
$0.94 imes 10^{20} \ \mu/year$		340	30	70 - 120
(no μ cooling)				
NuMAX II	1,300km			
3 GeV, 3MW				
$5.6 imes 10^{20} \mu$ /year		2000	300	420 - 700

factor taken into consideration

BROOKHAVEN (FLUKA05) Optimization of Pion Production from the Target

For pions 3-10 GeV, low-Z materials, beam energies of \sim 40 GeV

Optimization of Pion Production from the Target (FLUKA05)

Longer target lengths preferred, width = 3x beam width

NONCHARVEN Example targets: NuMI/MINOS

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

6.4 x 15 mm² graphite segments. 1m long = 1.9 interaction lengths. $\mathcal{O}(10)$ KW beam power at 1 mm beam width. Water cooled.

Evidence of NT02 damage after integrating 6×10^{20} POT:

BROOKHAVEN NuMI target operational experience

C. Densham presentation

NuMI/NO ν A Modifications

For 700kW NOvA beam, 9.9kW in target core, 4.7kW in target casing

Example targets: Hybrid Target

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introductior

Neutrinos from Proto Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

Use combination Low-Z/High-Z to increase π production

Pion yields from a hybrid C-Ta target at 120 GeV

BROOKHINVEN Example targets: Mercury jet

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

Tunable Focusing with Double Parabolic Horns (NuMI)

NuMI Horn Performance

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proton Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

FNAL MI ν beams operational parameters at 120 GeV:

Beam Parameter	NuMI LE	NOνA	PIP II
Beam power to target (kW)	400	700	1200
MI Intensity (PPP)	$4.0 imes10^{13}$	$4.9 imes10^{13}$	$7.6 imes10^{13}$
MI Cycle Time	2.1s	1.33s	1.2s
Target Upstream End(Z,cm)	-35	-140	TBD
Horn 2 location	10m	19m	TBD
Annual uptime	$1.6 imes10^7$ s	$1.7 imes10^7$ s	$1.8 imes10^7$

Horns and striplines are made of Al. Inner conducter is water cooled. The horn heating loads are:

			NuMI 4	00 kW		NOvA 700 kW				
Heating	Loads (<mark>kW</mark>)	Inner Conductor	Outer Conductor	Ceramic Ring	Clamps	Inner Conductor	Outer Conductor	Ceramic Ring	Clamps	Stripline
	Joule heating	5.8				8.5				1.2
Hornl	Beam heating	5.6	13.8	0.5	2.3	6.7	15	0.9	4.52	2.1
	Thermal Radiation			1.5			2.57			
	Total		29	.5			38	.2		3.3
Horn2	Joule heating	1.1				1.5				1.2
	Beam heating	0.4	4			1.5	7.2			0.17
	Total		5.	5.5			10.2			1.4

NuMI/NOvA at 700 kW, 48.4 kW heating load in Horns

NuMI Horn Performance

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Protor Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

<u>Horns</u>	<u>Status</u>	<u># Pulses</u>	<u>Location</u>	<u>Comments</u>
PH1-01	Very Used, Water Leak	24.2M	CO Bay	9 R/hr @ 1 ft. on 5/12/14
PH1-02	Used, Still Operational 400kW "Spare"	45.9M	CO Bay	35 R/hr @ 1 ft. on 9/10/14
PH1-03	400kW Spare, Upgraded Cooling for higher beam power	0	MI-8	
PH1-04	700 kW Horn Stripline Fracture	27M	NuMI Target Pile	Must be replaced Very Radioactive
PH2-01	Used, Stripline Fracture	28.1M	C0 Bay	Intend to ship off- site FY16
PH2-02	In operation	65.1M Pulses 4/13/2015	NuMI TH Beamline	

Robust design allows for improved facility uptime

BROOKHAVEN T2K 3 Horn Design

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Proto Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

Table 1: Typical dimensions of T2K magnetic horns.

Parameters	horn-1	horn-2	horn-3
Inner diameter	54 mm	80 mm	140 mm
Outer diameter	400 mm	1,000 mm	1,400 mm
Length	1.5 m	2.0 m	2.5 m

Table 2: Summary of heat deposit in each horn. Heat deposit from beam exposure is based on the design intensity of 3.3×10^{14} protons/pulse. Joule heating for each horn is estimated for pulse widths of 2.4 (horn-1) and 3.6 ms (horn-2 and horn-3). The calculation of the total heat deposit in units of kW is based on a 2.1-s cycle.

	horn-1		hor	n-2	horn-3		
	inner	outer	inner	outer	inner	outer	
Beam (kJ)	14.7	9.7	4.1	7.6	1.1	2.4	
Joule (kJ)	11.7	0.6	6.1	0.4	4.1	0.2	
Total (kJ)	36.7		18.2		7.8		
Total (kW)	17.5		8.7		3.7		

For 750kW beam, 30kW deposited in horns

Optimization of focusing for LBNF/DUNE (PRELIMINARY)

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Protor Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

- Reference design for LBNF/DUNE is NuMI-like target and 2 NuMI horns 6.6m apart
- Optimized focusing design with 3 horns obtained from a genetic algorithim with the physics parameter to be measured (CP) used to gauge fitness.
- Target geometry is optimized at the same time, as well as proton beam energy with realistic Main Injector power profile (1.07 MW at 60 GeV to 1.2 MW at 120 GeV).
- Limits on horn diameter and length are imposed based on experience with T2K and NuMI horn manufacturing
- Limits on horn separation imposed based on size of target chase.

Optimization of focusing for LBNF/DUNE (PRELIMINARY)

Neutrino Production with Proton Drivers

Mary Bisha Brookhaven National Laboratory

Introduction

Neutrinos from Protor Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

Computationally advanced optimization techniques

= significant gain in flux

Optimization of focusing for LBNF/DUNE (PRELIMINARY)

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Protoı Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

Parameter	Lower Limit	Upper Limit	Unit	
Horn A: L.	1000	4500	mm	3717
Horn A: F1A	1	99	%	51
Hom A: rls	20	50	mm	33
Horn A: r2A	20	200	mm	147
Horn A rOCA	200	650	mm	630
Horn B: La	2000	4500	mm	2551
Horn B: F18	0	100	%	37
Horn B: F28	0	100	%	12
Horn B: F3n	0	100	%	2
Horn B: F4n	0	100	55	16
Horn B: R1s	50	200	mm	186
Hom B: R2*	20	50	mm	47
Horn B: R3s	50	200	mm	179
Horn B: ROC8	200	650	mm	633
HornB: Z position	2000	17000	mm	5453
Hom C: Lc	2000	4500	mm	2694
Horn C: Flc	0	100	%	30
Horn C: F2c	0	100	%	21
Horn C: F3-	0	100	%	2
Horn C: F4c	0	100	%	9
Horn C: R1c	50	550	mm	388
Horn C: R2c	20	50	mm	26
Horn C: R3c	50	550	mm	306
Horn C: ROCc	550	650	mm	620
Horn C: Z Position	4000	19000	mm	17836
Target Length	0.5	2.0	m	1.98
Beam spot size	1.6	2.5	mm	2.1
Target Radius	9	15	mm	7.8
Proton Energy	60	120	GeV	106
Horn Current	150	300	kA	270

Horn	Location	Length	ID	OD	Current
	(m)	(m)	(mm)	(mm)	(kA)
Horn A	0	3.7	66	1260	270
Horn B	5.4	2.6	94	1266	270
Horn C	17.8	2.7	52	1240	270

Target (graphite) L=2m, R=7.8mm, $E_p = 108$ GeV, $\sigma_{\text{beam}} = 2.1$ mm

The LBNF Beamline

Primary proton beamline: extracts 60-120 GeV designed for 1.2MW upgradable to 2.3MW

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Protor Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

Advanced conceptual design with upgraded tunable NuMI focusing:

LBNF Decay Pipe

33 / 38

LBNF Absorber

Neutrino Production with Proton Drivers

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Protor Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Protor Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

PRELIMINARY: Optimized focusing design and possible wings added to target could reduce peak energy deposition in absorber 8-12 $\times.$

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Protor Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions In most long-baseline ν expts, 50 kton.MW.yr of running produces only $\mathcal{O}(100)$ s of $\nu_{\mu} \rightarrow \nu_{e}$ CC events in the FD

- Longer decay channels, smarter focusing designs, novel target and focusing materials could potentially increase $\nu/p \ge 2$ for equal power on target.
- Facility uptime and efficiency requires robust focusing/targeting designs lessons learnt from current beamlines.
- Neutrino factories require more beam power on target than conventional beams to produce equal statistics of ν_e → ν_μ events. But only an NF produces high intensity ν_e beams.
- The vast majority of the beam power > 70% is deposited in the target chase and absorber = challenging design.

Mary Bishai Brookhaven National Laboratory

Introduction

Neutrinos from Protor Drivers

Target Designs

Focusing Designs

Multi-MW Beamline Designs

Summary and Conclusions

THANK YOU

LBNF Near Site Schedule

