

High Power Solid-State RF Sources for Accelerator Applications An Efficiency Point of View

M. Gaspar

PAUL SCHERRER INSTITUT _____

Solid-State Amplifier Technology

- Modern technology in evolution.
- No high voltage
- No radiation issues
- Price already low and going down.
- Good optimization possibilities
- Redundancy.
- Compact.
- Simple cooling.
- Distributed circulator and load.
- Low phase noise.
- ◆ No Vacuum.

Disadvantages:

- Not enough experience acquired.
- Not well known technology.
- Not enough reliability data.

Solid-State Amplifier: Simplyfied Block Diagram

EUCARD²

Solid-State Amplifier System Overview

3D-View of 65kW 500MHz Amplifier System

EUCARD²

60.6%

-30

-35

0

200

400

Pout[W]

600

RF Amplifier Measurement Results - Step 6 - Module 069

Vdd=20.0V

Vdd=30.0V

Vdd=40.0V

Vdd=50.0V

800

1000

-35

0

5

10

Pin[₩]

Step6: Module:069 Pout[W] × Pin[W]

EUCARD²

Paul Scherrer Institut • 5232 Villigen PSI

~61.1%

Efficiency

M. Gaspar - March 2016 - 4/14

15

Vdd=40.0V

Vdd=50.0V

20

25

RF Power Amplifier Module – Typical

BLF578 Pout=1000W f=88-108MHz Eff=77%

MRFE6VP61K25H Pout=1100W f=1.5-35MHz Eff=76%

MRFE6VP61K25H Pout=1000W f=142-150MHz Eff=75%

MRF6V12500HS Pout=500W f=1.2GHz Eff=57% Pulsed Duty Cicle=20%

Typical RF Ldmos Transistor packages

BLF578 Pout=1000W f=352MHz Eff=70%

MRF8VP13350N Pout=350W f=1300MHz Eff=58%

MRF7S24250N Pout=250W f=2450MHz Eff=55%

PAUL SCHERRER INSTITUT _____

Plastic

package

Present Transistor Technology for High Power Applications

- Packages: plastic (cheaper) and ceramic (traditionaly more reliable).
- Pout=1250W possible today at low frequencies.
- LDMOS is the cheapest technology up to 3GHz. Other technologies coming at high power levels: SiC, GaAs, GaN, etc..
- A packaged device is composed of a large array of transistors all connected in parallel. Ex: BLF578=2x 76 transistors.
- Lower Transistor die temperature
 → higher output power, gain and efficiency.
- Output and input Impedances (Drain and gate impedances) very low. Balanced configuration higher impedances → lower losses in matching structure → balun needed.
- Single-ended difficult to realize at very high output power due to very low impedance at the output (2 drains in parallel). No Balun needed.
- Large number of transistors have to be stacked to reach high power levels.

EUCARD²

Array of LDMOS RF amplifiers

Example of transistors available in the market for high power RF

Transistor	Frequency Range	Efficiency	Max Output Power	Price/Watt (USD/W)	Remarks
STAC3932F	0-250MHz	70%	580W	0.16	•CW (580W)and pulsed (900W). Vdd=100V.
BLF188	0-200MHz	65-80%	1200W	0.2	• Wide range of applications.
BLF578	0-600MHz	65-80%	1000W	0.3	• Wide range of applications.
MRFE6VP61K25H	1.8-600MHz	74%	1200W	0.25	CW and pulsed.No proven CW performance at f>250MHz.
MRF8VP13350N	700-1300MHz	58%	350W	0.54 (250 pc)	•CW and pulsed. •Internally input matched.
MRFE6VP8600H	700-1300MHz	50%	600W	0.3	• Pulsed.
MRF7824250N	2400-2500 MHz	55%	250W	0.6	• CW and pulsed. • Internally matched.

The Circulator

A key component with non negligible limitations

Drop-in Circulator – Typical Features

Insertion Loss	0.2dB (4%)
Isolation	23dB (0.5%)
Total Loss	~4.5%
Price (estimated)	~0.1USD/W

Drop-in Circulators:

Advantages:

Lower Price/W.

One device per power amplifier module. Redundancy. Failure affects minimally the whole amplifier.

Disadvantages:

Higher Insertion loss, lower Isolation, higher efficiency degradation.

Large number of circulators used.

Large Circulator – Typical Features					
Insertion Loss	0.05dB (1.1%)				
Isolation	26dB (0.25%)				
Total Loss	~1.35%				
Price (estimated)	~0.5USD/W				

Large High Power Circulators: Advantages: Only one device required. Lower Insertion loss, higher Isolation, lower efficiency degradation. Disadvantages: Higher Price/W. Failure stops the whole amplifier.

Important Features:

Protects the amplifier against reflected power.

Increases combiner isolation between ports \rightarrow improving amplifier stability.

Limitations:

Non ideal insertion loss and isolation \rightarrow power losses \rightarrow system efficiency degradation.

Output Power Combiner

3D View – Complete Combining Structure Example: Output Power Combiner of the PSI 500MHz 65KW Solid State Power Amplifier

High Power Combiners – Typical Performance Parameters

Combiner Type	Insertion Loss (Typical)	Efficiency	Loss	Remarks
Coaxial (Quarter Wavelength)	-0.03dB	99.3%	0.7%	Only available at high frequencies. Large size. Very low losses.
Transformer -0.08dB		98%	2%	Only available at low frequencies. Efficiency dependent on materials and construction technique.
Cavity	-0.17dB	96%	4%	Early Development Phase.

The efficiency of the combiner has a direct influence on the system efficiency and the system output power as it is placed after the last amplification stage.

Input Power Splitter

Wideband operation possible using ferrite transformers at low frequencies up to 100MHz.

Bandwidth decreases as the number of channels increases.

Splitter losses affect minimally the system efficiency as they are placed before the last amplification stage.

Narrowband operation helps to protect the amplifier system against excitation outside the accepted frequency range.

Efficiency Improvement Overview of Solid-State Amplifier Components and possible efficiency

Component	Efficiency	Loss	Possible efficiency improvement	Remarks	
Transistor	50% (1.3GHz – 250W) 60% (500Mhz – 1kW) 70% (250MHz – 1kW) 80% (50MHz - 1kW)	20%-50%	 Maximum Vdd increase. Ron reduction. Improve device cooling. 	 Efficiency is frequency dependent. Technological advance will further improve the efficiency. Switching amplifiers can have Eff>90% at low frequencies (f<30MHz). 	
Circulator	96% (500MHz – 1kW) 98.8%(350MHz-1MW)	4% 1.2%	 Reduction of circulator leads. Better cooling. Reduction of material losses. 	 Efficiency is frequency dependent. Circulator removal further improves the efficiency, but: no amplifier protection against reflection, degraded stability and worse output combiner channel isolation. 	
Balun	99.5% (coax 500MHz) 98% (PCB 500MHz)	0.5% 2%	 Reduction in coax cable losses. Improvement in printed implementation. 	 Coax Balun - Very low losses, cheap. Printed Balun - High losses, early development phase. Single-ended topology supresses balun but output matching structure has higher losses due to lower transistor output impedance. 	
Matching structures	99% (PCB 500MHz)	1%	 Reduction in capacitor losses. Reduction in PCB losses. Increase of transistor output impedance. 	 Output matching structure has strong influences in the system efficiency and reliability. Technological advance in capacitor technology (mica and ceramics) will further improve the efficiency and power handling. 	
Power Supply	89%-95%	5%-11%	 Advances in Mosfet technology. Higher switching frequency. Reduction of the connection path from power supply DC output to RF power amplifier. 	 Eff=95%-98% already available in some special cases. Difficult to obtain high efficiency and wide voltage adjustment range. Wide voltage adjust range is important for efficiency optimization at any RF output power lower than the maximum. 	
Driver and preamplifier	~45% Preamplifier - class AB Driver – class A	55%	• Operating point optimization.	 Preamplifier and driver give around 1% system efficiency degradation. No considerable efficiency improvement expected from operating point optimization. 	
High power coaxial cables	99%	1%	 Reduction of cable length. Direct connection (cable suppression) 	• The suppression of high power cables is an alternative to reduce the cable losses. But flexibility in maintenance is also lost.	
Cooling system	-	-	 Cooling liquid temperature reduction. Improvement of cooling liquid. Improvement of heatsink cooling capabilities (higher turbulence). 	• Reduction of the temperature of cooling liquid has strong influences in transistor efficiency and gain. The lower the temperature the higher the system efficiency.	

Efficiency Optimization Psi 500MHz 65kW Solid-state High Power Amplifier

SSPA Example: Efficiency optimization at 30kW (black marker) and Maximum Efficiency Operation (red marker)

Comparison: Klystron Amplifier (incl. accessories) vs. SSPA (with efficiency optimization)

	Booster	(pulsed)	Storage Ring (CW)		
	Duty cic	le:50%	Beam current: 400mA		
	Klystron	SSPA	Klystron	SSPA	
	Amplifier: BO	1x65kW System	Amplifier: SR3	2x65kW System	
Pout	36kW	36kW	100kW	100kW	
Efficiency	11.2%	46.5%	40%	52%	

Pin

PAUL SCHERRER INSTITUT Example Performance Results of a Complete System

65kW 500MHz Amplifier System in Operation.

65kW 500MHz Amplifier System Performance: Maximum Output Power

Vdd[V]	Pout[kW]	Pmains[kW]	Efficiency[%]	Pin[W]
48	67	124	54	36.6
50	68	129.2	52.6	37.3

The PSI 500MHz 65KW Solid State Power Amplifier

Full 65kW Amplifier System Measurement Results: Pout and Efficiency vs Pin

Full 65kW Amplifier System Measurement Results: Pout and Efficiency vs Pin **EUCARD**²

PAUL SCHERRER INSTITUT _____ Comparison of Some Available Complete Systems

Developper	Frequency	Output Power (max/op)	CW/Pulsed	Rise/Fall Time	Pulse Width	Rep. Rate	Efficiency	Remarks
PSI	500MHz	72kW/65kW	CW/Pulsed	45ns/45ns	0-100%	-	54% (max @ 64kW) 47.8% (30kW,Optim.)	Efficiency measured from mains input to RF output (includes all components).
ESRF (Areva)	352MHz	75kW/70kW	CW/Pulsed	-	-	1Hz/ 10Hz	57%/55%	CW. AC-DC external converter (Eff=90%) not included in efficiency performance. Expanded to 150kW.
SOLEIL	352MHz	35kW/30kW	CW/Pulsed	-	-	-	50%	CW. Probably AC-DC external converter not included in efficiency performance. Expanded to 180kW.
LNLS	472MHz	32kW/25kW	CW	-	-	-	57%	CW. Particle accelerator. Expanded to 50kW.
Cryoelectra	72.8MHz 118MHz 500MHz	150kW/115kW 32kW/16kW 75kW/45kW	CW CW CW	- - -	- - -	-	57.2% 45.9% 50.5%	Particle therapy. Efficiency can be optimized. No circulator. Light source. Light source.
ELBE Sigmaphi/Bruker	1300MHz	18kW/16kW	CW/Pulsed	20ns/60ns	0.5-6ps 40-100us	13MHz 1-100Hz	47%	Material research.Price<10\$/W@1300MHz.
R&K	1.8MHz 509MHz 1300MHz	60kW(pep) 20kW 16kW	CW/Pulsed CW CW/Pulsed	- 10ns/10ns	- - -	- - -	56% ?(Linear) 36%	Accelerator application. Forced air and water cooled. Forced air and water cooled.
Tomco	350MHz 700MHz	10kW 10kW	CW CW	-	-	-	55% 45%	Particle accelerators. CW. Expandable to 110kW. Particle accelerators. CW. Expandable to 80kW.
Siemens ESS/Siemens	72.5MHz 352MHz	18kW 48kW	CW Pulsed	-	- 3ms	- 14Hz	75% 60%	Proton therapy. European Spallation Source. Expandable to 400kW (Siemens R&D).

SOLEIL Amplifiers

ESRF Amplifiers

LNLS Amplifiers

PAUL SCHERRER INSTITUT ______

Thank you

