

Universität Zürich[™]

Search for heavy resonances in the W/Z-tagged dijet mass spectrum at CMS

Thea Klaeboe Aarrestad

PhD seminar, PSI 27.08.15 Physics Institute, University of Zurich

Why X→VV→jj

THEORETICAL MOTIVATION

- Several BSM theories predict existence of heavy resonances with M > 1 TeV decaying to WW/ZZ/ZW
 - Extra dimension models: Solve hierarchy problem by letting gravity propagate in extra spatial dimensions making it appear weak
 - Bulk scenario of Randall-Sundrum (RS): One warped extra dimension. Fermions allowed to propagate in bulk of extra dimension explaining unpredicted Higgs Yukawa couplings.

Signature: Narrow resonances decaying primarily to bosons (WL, ZL, H)

EXPERIMENTAL MOTIVATION

- 8 TeV diboson analyses see curious excess of events!
 → All-hadronic channel amongst most sensitive
- 13 TeV LHC data taking has begun
 → time to explore new energy domain!

Boosted topologies

MAIN CHALLENGE

 Vector bosons emerging from decay of > 1 TeV resonances usually highly energetic:

$$\Delta R_{qq}^{\min} \approx \Delta \theta_{qq}^{\min} \approx 2 \frac{M_V}{p_{T,V}}$$

- Above W/Z p_T > 200 GeV decay products merged into single massive R = 0.8 jet!
- Search for $X \rightarrow VV \rightarrow 2$ jets, where V=W/Z

Analysis strategy

DEALING WITH THE BACKGROUND

- Main background: QCD multijet production
- Reject by
 - W/Z-tagging methods (grooming, n-subjetiness) taking advantage of:

STRATEGY

- Reconstruct two bosons and VV invariant mass
- Estimate background from smooth fit to data
 - no need for background Monte Carlo
- Bump hunt in dijet inv. mass spectrum!

W/Z-tagging

JET MASS: PRUNING

- Improve jet mass resolution by removing soft, large angle particles from the jet
- Procedure:
 - Recluster jet using Cambridge-Achen algorithm with R=0.8, requiring that each recombination satisfies

 $\frac{\min(p_{T1}, p_{T2})}{p_{Tp}} > 0.1 \qquad \Delta R_{12} < 0.5 \times \frac{m_{jet}}{p_{T}}$ Removes soft particles
Removes wide angle particles
Additional prong hard enough to
end up in different hard subjet

- Quark/gluon jet mass pushed to zero!

W/Z-tagging

JET SUBSTUCTURE: N-SUBJETTINESS

 $p_{\rm T}\mbox{-}weighted sum over all jet constituents of the distance w.r.t the closest of N axes in a jet$

$$\tau_{N} = \frac{1}{d_{0}} \sum_{k} p_{T,k} \min((\Delta R_{1,k}), (\Delta R_{2,k})...(\Delta R_{N,k}))$$

Distance between momentum of constituent k w.r.t momentum of rest-frame subjet N

Each constituent assigned to nearest subjet!

- Axis are obtained by undoing last (N-1) steps of jet clustering algorithm
- Small $\boldsymbol{\tau}_N$ indicates compatibility with N axes hypothesis
- To discriminate 2-prong W/Z jets from 1-prong q/g jets, use ratio:
 - $\tau_2/\tau_1(\tau_{21})$
 - Typical W/Z-tagger (pruning+n-subjettiness):
 - 3 % mistag rate
 - 55 % efficiency

Object reconstruction and selection

The fitting procedure

THE BACKGROUND FIT

The QCD dijet background shape is assumed to be described by the a smoothly falling function of the form

$$\frac{dN}{dm} = \frac{P_0(1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2}}$$

- Smoothness test of observed data

8

THE SIGNAL FIT

- Shape extracted from signal MC
 - P.D.F models constructed as composite models with Gaussian core and an exponential tail.
 - Parametric shape uncertainties due to jet energy scale and resolution uncertainties inserted by variations of Gaussian peak position and width.

9

Parton luminosity distributions

LUMINOSITY SCALING

- Scaling of parton luminosity with collision energy gives huge increase in discovery potential for the energy increase
 - For 2 TeV Bulk Graviton, increasing energy by factor less than 2 increase parton luminosity by 15!

→ 20 fb⁻¹ at 8 TeV is the equivalent of 1.3 fb⁻¹ at 13 TeV!

 In the first few months of running at 13 TeV, huge amount of data will be available!

FIRST 13 TEV DATA EVER NOW AVAILABLE!

- 42 pb⁻¹ of data recorded with CMS after first 50 ns run of LHC!
- 200k events passing analysis triggers,
 30 events in signal region!

Expected limits

HYPOTHESIS TESTING

 Hypothesis test by comparing fits of observed data with "background-only" function and "background + signal" function.

8+13 TEV EXPECTED LIMITS

- Combination of the dijet analyses using 19.7 fb⁻¹ of 8 TeV data and 3 fb⁻¹ of 13 TeV MC:
 - For resonance masses above 2.4 TeV, 13 TeV results more sensitive with 3 fb⁻¹ of data!
 - 8+13 TeV combination improves sensitivity over whole mass range

Summary

CONCLUSION

- Use of novel W/Z tagging techniques allows great discrimination between signal and background in boosted topologies
 - Very useful tool at 13 TeV LHC!
- Due to parton luminosity scaling, at high resonance masses 13 TeV results can be more sensitive than 8 TeV analysis with 3 fb⁻¹ of data already

OUTLOOK

 Excess of events seen by both CMS and ATLAS in the diboson channel. Is bump new physics or not?

 \rightarrow to be confirmed or excluded 13 TeV data!

 Very exciting to see whether the bump matures into sharp peak or dissolves into the background

BACKUP

Jets in the CMS detector

- Holistic approach to reconstruction: Particle Flow
 - Use information from all sub-detectors and combine for excellent angular and energy

RS1 Graviton

KK-graviton branching fractions. Left: Bulk scenario, assuming elementary top quark. Right: RS1 scenario. The dashed line represents the individual RS1 kk-graviton decay rates to a pair of light fermions ff, where f represents both light quarks (u,d,s,c,b) or leptons (e,μ,τ). -- Branching ratios are independent of *k* parameter.

8+13 TeV combination

1/fb

 Combination of the dijet analyses using 19.7fb⁻¹ of 8 TeV data and 1fb⁻¹ of 13 TeV pseudo-data

10/fb

 Combination of the dijet analyses using 19.7fb⁻¹ of 8 TeV data and 1fb⁻¹ of 13 TeV pseudo-data

8+13 TeV combination

Tau21 before mass cut

Simulation

