

Search for extra dimensions in the high mass diphoton spectrum at 13 TeV at CMS

M. Quittnat

August 27th, 2015

motivation

extradimensional models motivated by hierarchy problem

http://phdcomics.com/comics/archive.php?comicid=1522

- gravity diluted by extra spatial dimensions
- two important models for searches at TeV scale:
 - RS model (Randall-Sundrum):
 - gravitons well separated Kaluza-Klein (KK) resonances
 - coupling κ/M_{Pl}

• ADD model (Arkani-Hamed, Dimopoulos, Dvali):

- KK resonances- discrete energy levels 1-100meV ~ 1/size ED
- continuum spectrum in diphoton mass

- excited graviton preferentially decays into 2 gauge bosons (Spin 2 particle)
- opreferred over dilepton final state (branching ratio ≈ 2x higher)

Milena Quittnat

photon candidates from energy deposits "superclusters" in ECAL

ETH Institute for Particle Physics

reconstruction from detector:

- triggering: double photon $p_{ty} > 85$ GeV, single photon $p_{ty} > 200$ GeV
- energy corrections
- identification of photon candidates

event selection optimised for analysis sensitivity:

- photon pair with same primary vertex
- p_{tγ} > 100 GeV
- efficiency of 80-85 % with:

photon category	Iso _{Ch} cut (GeV)	Iso_{γ} cut (GeV)	H/E cut	$\sigma_{i\eta i\eta}$ cut
$\eta_{SC} < 1.4442$	5	2.5	5×10^{-2}	0.0105
$\eta_{SC} > 1.566$	5	2.0	5×10^{-2}	0.028

• 2 categories:

- both photons in barrel (EB)
- at least one photon in endcap (EE)
- control region: m_{γγ} > 300 GeV
- search region: m_{yy} > 500 GeV
- background modelling
- signal modelling
- statistical interpretation

0

use all available information to model the background

novum for exo searches!

- why semi-parametric approach?
 - parametric in $m_{\gamma \gamma}$ and non-parametric (histogram) in isolation of the two photons
 - additional data driven constraints to control and improve (reducible) bkg description

development of 3-dim fit to break down 3 bkg - components

background model : parametric

$$\begin{split} SR^{bkg}(m_{\gamma\gamma}, ChIso_1, ChIso_2) &= N^{pp} \cdot g^{pp}(m_{\gamma\gamma}) \cdot pdf^{pp}(ChIso_1, ChIso_2|m_{\gamma\gamma}) \\ &+ N^{p} \cdot g^{pf}(m_{\gamma\gamma}) \cdot pdf^{pf}(ChIso_1, ChIso_2|m_{\gamma\gamma}) \\ &+ N^{fj} \cdot g^{ff}(m_{\gamma\gamma}) \cdot pdf^{ff}(ChIso_1, ChIso_2|m_{\gamma\gamma}) \end{split}$$

- for semi-parametric fit:
 - independent shapes for background components in mγ γ
- baseline parametrisation:

 $model_{bkg}(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b\log(m_{\gamma\gamma})}$

ETH Institute for Particle Physics

how to build the histograms?

$$\begin{split} SR^{bkg}(m_{\gamma\gamma}, ChIso_1, ChIso_2) &= N^{pp} \cdot g^{pp}(m_{\gamma\gamma}) \cdot pdf^{pp}(ChIso_1, ChIso_2|m_{\gamma\gamma}) \\ &+ N^{pf} \cdot g^{pf}(m_{\gamma\gamma}) \cdot pdf^{pf}(ChIso_1, ChIso_2|m_{\gamma\gamma}) \\ &+ N^{ff} \cdot g^{ff}(m_{\gamma\gamma}) \cdot pdf^{ff}(ChIso_1, ChIso_2|m_{\gamma\gamma}) \end{split}$$

- template variable: charged particle flow isolation
 - same photon ID, but relax charged particle flow isolation (Chlso) cut from 5 to 15 GeV
- data-driven!

$\Phi^{\text{ETH Institute for}}$ prompt photon: random cone isolation

> 150,

15 Per

- assumption: prompt photon is isolated
- throw random cone from each photon candidate
 - keeping η , throw cone randomly in ϕ -direction
 - two random cones for each diphoton event

- σ_{inin} and Chlso are uncorrelated 0
- increase statistics for reducible bkg templates with event mixing 0
 - ADVANTAGE: can build templates with enough statistics in high pt region

→ determine purity

- I0 % statistical error for 1fb⁻¹
- closure within 5-10 %

ETH Institute for Particle Physics Control region in mass spectrum

- back to full semi-parametric background description:
 - to further constrain $m_{\gamma\gamma}$ shape for fake background use $\sigma_{i\eta i\eta}$ sideband

$$SB^{bkg}(m_{\gamma\gamma}) = N^{pf} \cdot g^{pf}(m_{\gamma\gamma})$$

» Final fit: simultaneous fit in relaxed charged isolation region ("SR+CR") and sideband

projection for 5 /fb

- Focus on background description of search for extra dimensions in high mass diphoton spectrum
- developed semi-parametric background model
 - fully data driven
 - break-down of background components with templates
 - for 2d-isolation templates purity within 5-10%
- started to use semi-parametric model for hypothesis test in search
- fit converges and gives purity estimates with a bias of 5%

outlook

these days data at 25 ns is arriving
first validations with 50 ns done
take data and look for the graviton!

Milena Quittnat

CMS at the LHC

3

Final working point selection set optimized for analysis sensitivity.

Taking broad set of signal hypoteses to avoid over-optimization.

	lso _γ (GeV)	ISO _{ch} (GeV)	$σ_{_{iηiη}}$	H/E	Electron veto
EB HighR9	2.5	5	0.0105 0.028	0.05	Conversion-safe
EB Low R9	2.5	5			
EE High R9	2	5			
EE Low R9	2	5			

$$Iso_{\gamma} = \alpha + Iso_{\gamma} - \rho \cdot A - \kappa \cdot p_{T}$$

Eta bin	0-0.9	0.9-1.5	1.5-2	22.2	2.2-2.5
A	0.21	0.2	0.14	0.22	0.31
α	1.5	1.5	2	2	2
κ	2 x 10 ⁻³				

20

- EBEB: ChPFIso(random cone) of each leg randomly projected on the two axes of the 2d histogram
- EBEE: ChPFIso(random cone) of EB photon candidate on 1st axis

goal: use these histograms in semi-parametric fit with combine tool

August 27th, 2015

$\Phi^{\text{ETH Institute for}}$ Works only if ChPflso & σ_{inin} uncorrelate

Milena Quittnat

13 TeV high mass diphoton search 23

or problem for pf and ff templates:

- if only "pool" of direct diphoton events from data
- ont enough events to populate the (pf and) ff-template with reasonable statistics
- especially for high pt photon candidates in sideband

Expected number of diphoton events for the 2-dimensional templates per fb.

category	expected events in 2d templates		
	prompt-fake	fake-fake	
EBEB	82	86	
EBEE	418	61	

category expected events in 2d templates

take single photon selection as "pool" for suitable photon candidates for templates:

- pt > 170 GeV because of single photon trigger
- p (with ChPFIso random cone) & sideband single photons with similar phase space values

match photons from diphoton event to single photons:

- with kNN: k-dimensional nearest neighbour algorithm
 - ca 20 neighbours
 - k=3 variables for matching
 - EBEB: log(p_t), η, nvtx
 - EBEE: log(pt), η, pholso
 - build cdf for each variable -> same metric
 - match photon to single photon with smallest cdf distance
 - include correlations between two legs
 - opf EBEB: p 80% leading photon
 - pf EBEE: p 60% in barrel

build template and project ChPfIso (random cone for p) for the categories as for pp template

- create templates in bins of $m\gamma\gamma$
- with limited statistics for pf and ff: 5 bins
- 2d fit with templates

 $c^{pp} \cdot pdf^{pp}(ChIso_1, ChIso_2) \cdot + c^{pf} \cdot pdf^{pf}(ChIso_1, ChIso_2) + (1 - c^{pp} - c^{pf}) \cdot pdf^{ff}(ChIso_1, ChIso_2)$

example: fit for highest mass bin EBEE (518 GeV - 7 TeV)

Milena Quittnat

background model : parametric

- $model_{bkq}(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b\log(m_{\gamma\gamma})}$ baseline parametrisation:

ETH Institute for Particle Physics

Projection of bkg components

template

template