Differential diboson production in hadron collisions at NNLO: the real-virtual contribution.

Simone Lionetti

August 26, 2015

ETH zürich

work in collaboration with C. Anastasiou and A. Lazopoulos

Why diboson production?

QCD production of $\gamma\gamma$ and VV^* :

irreducible backgrounds for Higgs physics studies!

precision requires NNLO QCD, best if fully differential!

Why diboson production?

2013 Les Houches wish list

Process	known	desired	motivation
v	d\sigma(lept. V decay) @ NNLO QCD + EW	d\sigma(lept. V decay) @ NNNLO QCD + NLO EW MC@NNLO	precision EW, PDFs
V+j	d\sigma(lept. V decay) @ NLO QCD + EW	d\sigma(lept. V decay) @ NNLO QCD + NLO EW	Z+j for gluon PDF W+c for strange PDF
V+jj	d\sigma(lept. V decay) @ NLO QCD	d\sigma(lept. V decay) @ NNLO QCD + NLO EW	study of systematics of H+jj final state
VV	d\sigma(V decays) @ NLO QCD d\sigma(stable V) @ NLO EW	d\sigma(V decays) @ NNLO QCD + NLO EW	$bkg H \rightarrow VV$ TGCs
$\mathrm{gg} \to \mathrm{VV}$	d\sigma(V decays) @ LO	d\sigma(V decays) @ NLO QCD	bkg to $H \rightarrow VV$
V\gamma	d\sigma(V decay) @ NLO QCD d\sigma(PA, V decay) @ NLO EW	d\sigma(V decay) @ NNLO QCD + NLO EW	TGCs
Vb\bar b	d\sigma(lept. V decay) @ NLO QCD massive b	d\sigma(lept. V decay) @ NNLO QCD massless b	bgk to VH(\rightarrow bb)
VV'\gamma	d\sigma(V decays) @ NLO QCD	d\sigma(V decays) @ NLO QCD + NLO EW	QGCs
VV'V"	d\sigma(V decays) @ NLO QCD	d\sigma(V decays) @ NLO QCD + NLO EW	QGCs, EWSB
VV'+1jet	d\sigma(V decays) @ NLO QCD	d\sigma(V decays) @ NLO QCD + NLO EW	bkg to H, BSM searches
VV'+2j	d\sigma(V decays) @ NLO QCD	d\sigma(V decays) @ NLO QCD + NLO EW	QGCs, EWSB
\gamma\gamma	d\sigma @ NNLO QCD		bkg to H→ \gamma \gamma

2 mass scales are a technical obstacle yet to overcome ...

... we need a test process ...

... and it's right down here!

 \leftarrow

RV subtraction based on QCD factorization

Soft factorization

Collinear factorization

Is NNLO real-virtual HARDER than NLO virtual?

Is NNLO real-virtual HARDER than NLO virtual?

Ready to tackle cross-section integration in ehixs!

Need additional cuts for photons in the final state

- (a) smooth cone isolation ($\delta_0 = \epsilon_{\gamma} = n = 1$);
- (b) minimum $p_T^{\gamma} > 20 \text{ GeV}$;
- (c) minimum invariant mass for $\gamma\gamma$, $m_{\gamma\gamma} > 20$ GeV.

Hadronic σ requires 7-dim. integration \Rightarrow adaptive Monte Carlo

[call_v	egas]	dimension	of	iı	ntegration =	7								
[vegas]	1	10000	pts	:	2.90831e+05	+-	3.943e+04	(1.36e-01)	chisq	0.0e+00	/	0		
[vegas]	2	20500	pts	:	2.75102e+05	+-	2.332e+04	(8.48e-02)	chisq	2.4e-01	/	1		
[vegas]	3	31500	pts	:	2.70420e+05	+-	1.092e+04	(4.04e-02)	chisq	3.0e-01	/	2		
[vegas]	4	43000	pts	:	2.69583e+05	+-	7.392e+03	(2.74e-02)	chisq	3.1e-01	/	3		
[vegas]	5	55000	pts	:	2.74407e+05	+-	5.263e+03	(1.92e-02)	chisq	1.2e+00	/	4		
[vegas]	6	67500	pts	:	2.75032e+05	+-	4.370e+03	(1.59e-02)	chisq	1.2e+00	/	5		
[vegas]	7	80500	pts	:	2.76359e+05	+-	3.709e+03	(1.34e-02)	chisq	1.5e+00	/	6		
[vegas]	8	94000	pts	:	2.77293e+05	+-	3.153e+03	(1.14e-02)	chisq	1.8e+00	/	7		
[vegas]	9	108000	pts	:	2.79138e+05	+-	2.704e+03	(9.69e-03)	chisq	3.1e+00	/	8		
[]														
[vegas]	1	100000	pts	:	2.80845e+05	+-	2.060e+03	(7.34e-03)	chisq	0.0e+00	/	0		
[vegas]	2	200000	pts	:	2.80793e+05	+-	1.396e+03	(4.97e-03)	chisq	1.2e-03	/	1		
[]														
[ehixs]	cross	s section												
[ehixs]	sigma	a = 280792	.926	648	36 +- 1395.9	701	9995 prob =	0.0274622	52626 1	total #	of	points	= 3079	989
	-						-					-		

Backup slides

Matrix element computation of $qq \rightarrow \gamma \gamma g$

Old-school Feynman diagrams + Integration By Parts reduction of loop integrals

Form of the result:

$$\sum c_i(x_j) \times M_i(x_j)$$

masters i

- c_i are rational functions of kinematical variables x_j ,
- M_i are Feynman integrals.

Partonic process has $2 \rightarrow 3$ kinematics:

for fixed \hat{s} there are 5 (4) independent variables.

$$\lambda = \frac{p_1 \cdot q}{(p_1 + p_2) \cdot q}, \qquad \bar{z} = \frac{(p_1 + p_2) \cdot q}{p_1 \cdot p_2},$$
$$\mathbf{Y} = \operatorname{arctanh}(2\lambda - 1), \qquad \mathbf{H} = \operatorname{arctanh}(2\bar{z} - 1).$$

This work

MadGraph 5

[Warning: z axis includes an arbitrary scale factor. Only finite term $\mathcal{O}(\epsilon^0)$ plotted.]

Backup slides

NNLO differential calculations and subtraction

UV divergences of loop integrals are dealt with by renormalization, not a problem here...

IR divergences (using dimensional regularization in $d = 4 - 2\epsilon$)

- *explicit*: $1/\epsilon$ poles coming from loop integration;
- implicit: divergent matrix elements produce $1/\epsilon$ poles when they are integrated over phase space.

$$\begin{split} \hat{\sigma}^{\text{NNLO}} &= \int_{N} d\hat{\sigma}^{VV} \\ &+ \int_{N+1} d\hat{\sigma}^{RV} \\ &+ \int_{N+2} d\hat{\sigma}^{RR} \end{split}$$

NNLO differential calculations and subtraction

UV divergences of loop integrals are dealt with by renormalization, not a problem here...

IR divergences (using dimensional regularization in $d = 4 - 2\epsilon$)

- *explicit*: $1/\epsilon$ poles coming from loop integration;
- implicit: divergent matrix elements produce $1/\epsilon$ poles when they are integrated over phase space.

$$\begin{split} \hat{\sigma}^{\text{NNLO}} &= \int_{N} \left[d\hat{\sigma}^{VV} + \int_{+1} d\hat{\sigma}^{RV}_{sub} \right] \\ &+ \int_{N+1} \left[d\hat{\sigma}^{RV} - d\hat{\sigma}^{RV}_{sub} \right] \\ &+ \int_{N+2} d\hat{\sigma}^{RR} \end{split}$$

NNLO differential calculations and subtraction

UV divergences of loop integrals are dealt with by renormalization, not a problem here...

IR divergences (using dimensional regularization in $d = 4 - 2\epsilon$)

- explicit: $1/\epsilon$ poles coming from loop integration;
- implicit: divergent matrix elements produce $1/\epsilon$ poles when they are integrated over phase space.

$$\begin{split} \hat{\sigma}^{\text{NNLO}} &= \int_{N} \left[d\hat{\sigma}^{VV} + \int_{+1} d\hat{\sigma}_{sub}^{RV} + \int_{+2} d\hat{\sigma}_{sub,2}^{RR} \right] \\ &+ \int_{N+1} \left[d\hat{\sigma}^{RV} - d\hat{\sigma}_{sub}^{RV} + \int_{+1} d\hat{\sigma}_{sub,1}^{RR} \right] \\ &+ \int_{N+2} \left[d\hat{\sigma}^{RR} - d\hat{\sigma}_{sub,1}^{RR} - d\hat{\sigma}_{sub,2}^{RR} \right] \end{split}$$

$$\mathcal{M}(p_1, \dots, p_n; q) \sim \varepsilon^{\rho}(q) J^a_{\rho}(q) \mathcal{M}(p_1, \dots, p_n) \quad \text{as} \quad q_{\mu} \to 0$$
$$J^a_{\rho}(q) = g_s \mu^{\epsilon} \sum_{\ell=0}^{\infty} (g_s \mu^{\epsilon})^{2\ell} J^{a(\ell)}_{\rho}(q),$$

$$\begin{split} J^{a(0)}_{\rho}(q) &= \sum_{i} T^{a}_{i} \frac{p_{i\rho}}{p_{i} \cdot q}, \\ J^{a(1)}_{\rho}(q) &= -\frac{S_{\epsilon}}{16\pi^{2}} \frac{1}{\epsilon^{2}} \Gamma(1-\epsilon) \Gamma(1+\epsilon) i f^{abc} \sum_{i \neq j} T^{b}_{i} T^{c}_{j} \left(\frac{p_{i\rho}}{p_{i} \cdot q} - \frac{p_{j\rho}}{p_{j} \cdot q}\right) \left[\frac{(-s_{ij})}{s_{iq} s_{qj}}\right]^{\epsilon} \end{split}$$

Soft subtraction

Splitting amplitudes

$$\mathcal{M}^{(1)}(p_1,\ldots,p_n;q) \sim \operatorname{Split}^{(0)} \times \mathcal{M}^{(1)}(zp_1,\ldots,p_n) + \operatorname{Split}^{(1)} \times \mathcal{M}^{(0)}(zp_1,\ldots,p_n) \quad \text{as} \quad q \to (z-1)p_1.$$

$$\operatorname{Split}_{q \to qg}^{(\ell)} = \frac{1}{s_{1q}} \bar{u}(\vec{q} + \vec{p_1}) \operatorname{Sp}_{q \to qg}^{\mu(\ell)} u(\vec{p_1}) \varepsilon_{\mu}^*(\vec{q})$$

$$Sp_{q \to qg}^{\mu(0)} = \gamma^{\mu},$$

$$Sp_{q \to qg}^{\mu(1)} = r_3(z)\gamma^{\mu} + r_4 \frac{(p_1 + q)^{\mu} q}{s_{1q}}$$

Splitting amplitude details

The coefficients r_3 and r_4

$$r_4 = \left(N_c + \frac{1}{N_c}\right) \frac{1}{2} \frac{\epsilon^2}{(1 - 2\epsilon)(1 - \delta\epsilon)} f_2;$$

$$r_3(z) = \frac{1}{2} \left[N_c(1 - z)f_1(1 - z) - \frac{1}{N_c}(zf_1(z) - 2f_2)\right] - r_4.$$

The special functions f_1 and f_2

$$\frac{1}{z}f_1\left(\frac{1}{z}\right) - 2f_2 = -c_{\Gamma}\frac{2}{\epsilon^2} F_1(1, -\epsilon; 1-\epsilon; 1-z);$$

$$\left(1 - \frac{1}{z}\right)f_1\left(1 - \frac{1}{z}\right) = c_{\Gamma}\frac{2}{\epsilon^2} \Big[{}_2F_1(1, \epsilon; 1+\epsilon; 1-z) - \pi\epsilon \cot(\pi\epsilon)(1-z)^{-\epsilon} \Big];$$

$$f_2 = -c_{\Gamma}\frac{1}{\epsilon^2}.$$

From splitting amplitudes to splitting functions

Collinear factorization for matrix elements squared

$$2\operatorname{\mathsf{Re}}\left[\mathcal{M}_{q\bar{q}\to Fg}^{(1)}\mathcal{M}_{q\bar{q}\to Fg}^{(0)*}\right] \sim \frac{P_{qq}^{(0)}(z)}{z\,s_{qg}}2\operatorname{\mathsf{Re}}\left[\mathcal{M}_{q\bar{q}\to F}^{(1)}\mathcal{M}_{q\bar{q}\to F}^{(0)*}\right] \\ + \frac{2\operatorname{\mathsf{Re}}\left[P_{qq}^{(1)}(z)\right]}{z\,s_{qg}}\left(\frac{\mu^2}{-s_{qg}}\right)^{\epsilon}\left|\mathcal{M}_{q\bar{q}\to F}^{(0)}\right|^2.$$

The tree-level and one-loop qq splitting functions

$$P_{qq}^{(0)}(z) = 2C_F g_s^2 \left[\frac{1+z^2}{1-z} - \epsilon(1-z) \right],$$

$$P_{qq}^{(1)}(z) = r_3(z) P_{qq}^{(0)}(z) + r_4 \left[2C_F \frac{1+z}{1-z} \right]$$

٠

Collinear subtraction

Backup slides

Soft-collinear subtraction term

Backup slides

Gram singularities inside phase space

Backup slides

Frixione isolation

Smooth isolation cones avoid the contributions coming from fragmentation functions of partons into photons.

The condition reads:

$$\sum_{i} E_{i} \theta(\delta - R_{i\gamma}) \leq \mathcal{X}(\delta) \quad \text{for all } \delta < \delta_{0},$$

where

$$R_{i\gamma} = \sqrt{(\eta_i - \eta_\gamma)^2 + (\phi_i - \phi_\gamma)^2},$$
$$\mathcal{X}(\delta) = E_\gamma \epsilon_\gamma \left(\frac{1 - \cos \delta}{1 - \cos \delta_0}\right)^n.$$

Can be reformulated as a measurement function factor

$$\mathcal{J} = \theta \bigg[\mathcal{X} \big(\min\{\delta_0, R_{i\gamma}\} \big) - \sum_{j=1}^{i} E_j \theta(\delta_0 - R_{j\gamma}) \bigg],$$

where partons are ordered in $R_{i\gamma}$.