

W⁺W⁻ differential cross-section

Measurement with the CMS detector at $\sqrt{s} = 8 \text{ TeV}$

Daniel Meister

based on the publication in arXiv:1507.03268

08/27/2015

08/27/2015 — W^+W^- differential cross-section — report for the 2015 PhD seminar by Daniel Meister

Outline

1 Introduction

Motivation History & Current Status

2 Analysis Details

Differential Distributions Inclusive Analysis

3 Conclusion

Introduction

08/27/2015 - W⁺W⁻ differential cross-section - report for the 2015 PhD seminar by Daniel Meister

Introduction

- measuring the WW production cross section
 - ightarrow using the WW ightarrow 2 ℓ 2u decay channel (clean selection)
 - \rightarrow Signature: two leptons and large missing E_T
 - \rightarrow important irreduciable background for ${\rm H}{\rightarrow}{\rm WW}$
- this process is testing EWK and QCD and Higgs sector
 - \rightarrow sensitive to soft gluons in initial state, triple gauge coupling

The CMS Experiment

 $08/27/2015 - W^+W^-$ differential cross-section - report for the 2015 PhD seminar by Daniel Meister

History & Current Status

WW cross-section measurements received attention

ightarrow inclusive measurements by ATLAS and CMS a bit above the theory prediction

 \rightarrow important background for the H \rightarrow WW channel + testing the gauge structure of the SM

Also, there is a recent CDF paper on WW production

 \rightarrow arXiv:1505.00801v1: $\sigma_{\rm WW}^{\rm meas}=$ 14.0 $^{+1.6}_{-1.4}$ pb, with an NLO SM prediction of 11.3/11.7 $\pm\sim$ 1 pb

History & Current Status

recent advancements in theory calculations

Source: arXiv:1408.5243

√ s [TeV]	NLO [pb]	NNLO [pb]
7	45.16 ^{+3.7%}	49.04 ^{+2.1%}
8	$54.77^{+3.7\%}_{-2.9\%}$	$59.84^{+2.2\%}_{-1.9\%}$
13	$106.0^{+4.1\%}_{-3.2\%}$	$118.7^{+2.5\%}_{-2.5\%}$
14	$116.7^{+4.1\%}_{-3.3\%}$	$131.3^{+2.6\%}_{-2.2\%}$

\sqrt{s} [TeV]	$\int \mathcal{L} \left[fb^{-1} ight]$	$\sigma_{ m WW}^{ m meas}$ [pb]	$\sigma_{ m WW}^{ m NNLO}$ [pb]
7	4.9	$52.4\pm2.0(ext{stat.})\pm4.5(ext{syst.})\pm1.2(ext{lumi.}) ext{pb}$	49.04 ^{+2.1%}
8	3.5	$69.9\pm2.8(\text{stat.})\pm5.6(\text{syst.})\pm3.1(\text{lumi.})\text{pb}$	59.84 ^{+2.2%}
8	19.365	$60.2\pm0.9(\text{stat.})\pm4.5(\text{syst.})\pm1.6(\text{lumi.})\text{pb}$	$59.84^{+2.2\%}_{-1.9\%}$

Differences to previous CMS analysis

- also measuring/publishing the fiducial cross-section
- checking differential distributions
- using the full luminosity
- multiple other improvements

ightarrow e.g. recomputation of PDF and QCD scale unertainties, making use of embedded data samples, etc.

Analysis Details

08/27/2015 — W^+W^- differential cross-section — report for the 2015 PhD seminar by Daniel Meister

Cuts (1/2)

Signal

Looking at the fully leptonic final state we require two leptons (within acceptance cuts) and missing E_T as we have real MET coming from the neutrinos.

Selection optimized to enhance S/B ratio

tight lepton ID/isolation

ightarrow to reject W+jets background (where the jet fakes a lepton)

Z-mass window cut and MVA for off-peak contributions

 \rightarrow to reject DY $\rightarrow \ell \ell$ background (fake missing E_T)

top veto based on b-tagging, soft-muon-tagging

 \rightarrow to reject ttbar and tW contributions (very important in 1-jet bin

third lepton veto

 \rightarrow to reject WZ events

• analysis performed in 4 exclusive categories

ightarrow splitted in DF/SF and 0/1 jet (jet $|\eta| <$ 4.7 and jet $p_{
m T} \ge$ 30 GeV)

Variable	Different Flavour	Same Flavour			
$q_{\ell_1} \cdot q_{\ell_2}$	< 0	< 0			
<i>p</i> _T [GeV]	> 20	> 20			
min proj. <i>E</i> ^{miss}	> 20	> 20			
DYMVA	-	> 0.88 (0jet), > 0.84 (1jet)			
$ m_{\ell\ell}-m_{\sf Z} $ [GeV]	-	15			
<i>p</i> _{T,ℓℓ} [GeV]	> 30	> 45			
$m_{\ell\ell}$ [GeV]	> 12	> 12			
add. leptons ($p_{\rm T} > 10{ m GeV}$)	veto	veto			
top-quark veto	applied	applied			

Leading lepton transverse momentum – p_{T,leading}

DF, 0-jet

DF, 1-jet

WW Fiducial Cross Section

- measurement is dominated by the 0-jet DF category
- the main source of systematic uncertainty is the modelling of the signal efficiency

 \rightarrow especially in connection with the jet veto efficiency

reporting the production cross section in fiducial regions

ightarrow chosen to be very close to the event selection (including the jet veto)

ightarrow fiducial volume definitions should be reproducable by theorists

 \rightarrow report values for different jet veto thresholds to communicate modeling of the jet veto efficiency

lower systematic uncertainties compared to extrapolating to the full phase space

ightarrow systematic uncertainty on the lepton efficiencies is very small

Fiducial Volume Definition

- jets at particle level clustered with the anti- k_{T} algorithm
- two e (μ) with $|\eta|$ < 2.5 (2.4) and $p_{
 m T}$ > 20 GeV

Results for different jet vetos in the 0 jet bin

$p_{\mathrm{T}}^{\mathrm{jet}}$ threshold [GeV]	$\sigma_{\it fiducial}$ measured [pb]	$\sigma_{\it fiducial}^{\it NLO}$ predicted [pb]
20	0.223 ± 0.004 (stat.) \pm 0.013 (exp.) \pm 0.007 (th.) \pm 0.006 (lum.)	$0.228\pm0.001\text{(stat.)}$
25	0.253 ± 0.005 (stat.) \pm 0.014 (exp.) \pm 0.008 (th.) \pm 0.007 (lum.)	$0.254\pm0.001\text{(stat.)}$
30 (*)	0.273 ± 0.005 (stat.) \pm 0.015 (exp.) \pm 0.009 (th.) \pm 0.007 (lum.)	0.274 ± 0.001 (stat.)

(*) used in later analysis steps

Differential Cross Section

- differential cross section as function of leading lepton $p_{\rm T}$, dilepton $p_{\rm T}$, invariant mass $m_{\ell\ell}$, and opening angle between leptons $\Delta \varphi_{\ell\ell}$
- same fiducial region as before (jet veto at 30 Gev)

ightarrow again including lepton acceptance: two e (μ) with $|\eta|$ < 2.5 (2.4) and $p_{
m T}$ > 20 GeV

• unfolding of "data – background" distributions

ightarrow top and W+jets backgrounds estimated from data, other background from MC

ightarrow jet smearing on signal applied

 response matrix is determined from POWHEG after reweighting the p_{T,WW}

 \rightarrow tested to be independet of the Monte Carlo used to derive the response matrix

SVD unfolding is used as a default method

ETH Institute for Particle Physics

> 100 120 140

19.4 fb⁻¹ (8 TeV)

Madgraph

MC@NI O

Powhea

Data

dilepton $p_{T,\ell\ell}$

08/27/2015 — W⁺W⁻ differential cross-section — report for the 2015 PhD seminar by Daniel Meister

p_{_{_{_{_{_{}}}}}}^{//} (GeV)

Differential Distributions

1 1.5

08/27/2015 — W⁺W⁻ differential cross-section — report for the 2015 PhD seminar by Daniel Meister

φ_{//} (GeV)

Inclusive Analysis

The inclusive cross section is determined as

$$\sigma_{WW} = \frac{N_{\mathsf{data}} - N_{\mathsf{bkg}}}{\mathcal{L} \cdot \varepsilon \cdot (\mathsf{3} \cdot \mathcal{B}(\mathsf{W} \to \ell \nu))^2}$$

where ε is the signal efficiency, including

- detector geometrical acceptance
- selection and trigger efficiencies

Signal Efficiencies per Category

Event category		Signal efficiency [%]			
0-jet category Came flavor		3.01 ± 0.22 (syst.) ± 0.02 (stat.)			
1 int catogory	Different-flavor	1.21 ± 0.09 (syst.) ± 0.01 (stat.) 0.96 ± 0.11 (syst.) ± 0.01 (stat.)			
I-Jet Category	Same-flavor	$0.34\pm0.04(\text{syst.})\pm0.01(\text{stat.})$			

Production Cross Section per Category

Event category		WW production cross section [pb]				
0 iot cotogory	Different-flavor	$59.9\pm1.1(ext{stat.})\pm4.9(ext{syst.})\pm1.6(ext{lum.})$				
0-jet category	Same-flavor	$64.6\pm2.1(ext{stat.})\pm6.4(ext{syst.})\pm1.7(ext{lum.})$				
1 int catagory	Different-flavor	$59.8\pm2.8(ext{stat.})\pm8.8(ext{syst.})\pm1.6(ext{lum.})$				
I-Jet category	Same-flavor	$65.8\pm5.5(\text{stat.})\pm11.4(\text{syst.})\pm1.7(\text{lum.})$				

Combination

The categories are then combined using a profile likelihood fit; this yields (theory: $\sigma_{WW}^{NNLO} = 59.8^{+1.3}_{-1.1}$ pb)

$$\sigma_{
m WW}=$$
 60.1 \pm 0.9 (stat.) \pm 4.5 (syst.) \pm 1.6 (lumi.) pb

Inclusive Analysis

Source	Uncertainty (%)
Statistical uncertainty	1.5
Luminosity	2.6
Lepton efficiency	3.8
Lepton momentum scale	0.5
missing E_T resolution	0.7
Jet energy scale	1.7
tt+tW normalization	2.2
W+jets normalization	1.3
$\text{DY}{\rightarrow \ell\ell}$ normalization	0.6
$\text{DY} \rightarrow au au$ normalization	0.2
W γ normalization	0.3
W γ^* normalization	0.4
VV normalization	3.0
$H \rightarrow$ WW normalization	0.8
Jet counting theory mode	4.3
PDFs	1.2
MC statistics	0.9
Total uncertainty	7.9

- Total uncertainty around 8%
- Result limited by systematics
 - \rightarrow jet counting: $\sim4.3\%$
 - ightarrow lepton efficiencies $\sim 3.8\%$
 - \rightarrow background normalization
 - \rightarrow luminosity \sim 2.6%

Conclusion

08/27/2015 - W⁺W⁻ differential cross-section - report for the 2015 PhD seminar by Daniel Meister

Conclusion

- presented an updated measurement of the WW cross-section at $\sqrt{s}=$ 8 TeV with the CMS detector
- inclusive result compatible with latest NNLO theory predictions ($\sigma_{WW}^{NNLO} = 59.8^{+1.3}_{-1.1}$ pb)

 $\sigma_{WW}^{measured} = 60.1 \pm 0.9 \, (stat.) \pm 4.5 \, (syst.) \pm 1.6 \, (lumi.) \, pb$

- measurement is currently limited by systematics
- fiducial results and differential distributions agree with MC predictions within the uncertainties
- looking forward to have a measurement at 13 TeV

Backup

Dilepton transverse momentum – $p_{T,\ell\ell}$

DF, 0-jet

= 19.365 fb

DF/SF 0/1 iets

200

Dilepton mass – $m_{\ell\ell}$

DF, 0-jet

DF, 1-jet

300

m, [GeV]

Dilepton opening angle – $\Delta \varphi_{\ell \ell}$

DF, 0-jet

DF, 1-jet

Leading lepton transverse momentum – p_{T,leading}

SF, 0-jet

SF, 1-jet

Dilepton transverse momentum – $p_{T,\ell\ell}$

SF, 0-jet

SF, 1-jet

Dilepton mass – $m_{\ell\ell}$

SF, 0-jet

SF, 1-jet

Dilepton opening angle – $\Delta \varphi_{\ell \ell}$

SF, 0-jet

SF, 1-jet

Systematic Uncertainties

	qq	gg	ttbar + tW	W+jets	WZ	Zγ	$W\gamma$	$W\gamma^*$	Zγ	Higgs
	$\rightarrow WW$	$\rightarrow WW$			+ZZ	$\to \ell \ell$			$\to \tau\tau$	
Luminosity	2.6	2.6	-	-	2.6	-	2.6	-	2.6	2.6
Lepton efficiency	3.5	3.5	-	-	3.5	-	3.5	-	-	3.5
Lepton momentum scale	e 1.0	1.0	-	-	1.0	-	1.0	-	-	1.0
MET resolution	2.0	2.0	-	-	2.0	-	2.0	-	-	2.0
Jet energy scale	2.0	2.0	-	-	3.0	-	2.0	-	-	3.0
ttbar+tW normalization	-	-	13-3	-	-	-	-	-	-	-
W+jets normalization	-	-	-	36	-	-	-	-	-	-
DYII normalization	-	-	-	-	-	30	-	-	-	-
DYtt normalization	-	-	-	-	-	-	-	-	10	-
$W\gamma$ normalization	-	-	-	-	-	-	30	-	-	-
$W\gamma^*$ normalization	-	-	-	-	-	-	-	40	-	-
Underlying event	3.5	3.5	-	-	-	-	-	40	-	-
PDFs	1.3	0.8	-	-	4.0	-	4.0	4.0	-	8.0
Higher-order corrections	3.8-9.2	30	-	-	5.0	-	-	-	-	18-28

aTGC Limits

Effective Field Theory

- if scale is large new physics can be described by an effective field theory
- there are six different dim-6 operators; where the following three are C- and P-conserving

$$\begin{split} \mathcal{O}_{WWW} &= \frac{c_{WWW}}{\Lambda^2} \mathrm{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}], \\ \mathcal{O}_W &= \frac{c_W}{\Lambda^2}(D^{\mu}\Phi)^{\dagger}W_{\mu\nu}(D^{\nu}\Phi), \\ \mathcal{O}_B &= \frac{c_B}{\Lambda^2}(D^{\mu}\Phi)^{\dagger}B_{\mu\nu}(D^{\nu}\Phi), \end{split}$$

- only 0 jet category is considered
- using the $m_{\ell\ell}$ distribution

aTGC Limits

68% and 95% CL contours for the three 2D cases

95% CL allowing only one coupling constant to vary

- $-5.73 < c_{WWW}/\Lambda^2 < 5.95 \text{ TeV}^{-2}$
- $-11.38 < c_W/\Lambda^2 < 5.39 \text{ TeV}^{-2}$
- $-29.17 < c_B/\Lambda^2 < 23.90 \text{ TeV}^{-2}$