Cosmogenic activation of xenon

PhD seminar Zurich, 27th August 2015

Piastra Francesco

University of Zurich

Motivations: direct dark matter future searches

- Intrinsic sources dominate the electron recoil background in multi-ton scale detectors: ⁸⁵Kr, ²²²Rn, solar neutrinos.
- Long and medium-lived cosmogenic products of Xe may contribute to the intrinsic background.
- > No direct measures of cosmogenic activation studies of Xe are present in literature.
- Prediction codes for cosmogenic activation (ACTIVIA, COSMO, TALYS) have never been validated for xenon.

Cosmogenic activation

High Altitude Research Center Jungfraujoch [http://www.ifjungo.ch/jungfraujoch/]

- Measure the γ-ray spectra before and after the exposure of the samples to CR flux with HPGe spectrometer
- > Xe gas sample:
 - ➢ 2.04 kg
 - > Natural isotopic abundances
 - Impurities < 10 ppm</p>
- > OFHC Cu sample (as benchmark sample):
 - ➤ 10.35 kg
 - Natural isotopic aboundances
 - Impurities < 100 ppm</p>
- Exposure:
 - 3470 m asl (728 g/m² atm depth)
 - ➢ 345 days
 - Cosmic ray flux 11.4 time than sea level
- Radio-nuclei produced by nuclear fragmentations by HE nucleons (>10 MeV).
- > Atmospheric model: U.S. Standard Atmosphere 1976

Gator γ -ray spectrometer [JINST 6, P08010]

- 2.2 kg HPGe coaxial crystal (82 mm diameter, 81.5 mm height).
- Ultra low activity shielding materials for detector and shielding.
- Air tight encasing and glove box to prevent ²²²Rn diffusion from outside.
- 21 liters samples cavity (25×25×33 cm³) to allow the measurement of large and massive samples.
- > Boil-off N_2 cavity purging to flush out the ²²²Rn emanated from the detector's materials.

Gator performance

Background

- > Energy threshold: \approx 50 keV
- ➤ Ultra-low background: ≈270 counts/day in the 50 keV 2650 keV energy range (≈0.1cnts/keV/d).
- High sensitivity over run time of 10 20 days:
 - > 10 mBq/kg for high self-shielding materials (Cu, steel, Ti, Pb).
 - \geq 1 mBq/kg for low self-shielding materials (plastics, PTFE, electronic components).
- > Main contributions to the background: 40 K, 228 Th chain, 222 Rn in the cavity.

Bayesian data analysis

- > Activities determined by the isotopes' most prominent γ -lines
- > Signal region: $\pm 3\sigma$ interval around the line center (between red lines)
- > Control region: $\pm 3\sigma$ outside the signal region (between red and green lines)
- Detailed Geant4 model of the detector's and samples' geometry used to evaluate the γ-lines full absorption efficiencies
- > G4RadioactiveDecay class used to simulate isotopes decays: correct BR for γ -lines

Bayesian data analysis

 $P(A|Data) \propto P(Data|A)\Pi(A)$

$$\mathcal{L} = \prod_{k=1}^{N_{\text{lines}}} \text{Poiss}\left(C_{\mathbf{S}_{k}}|\gamma_{\mathbf{S}_{k}}\right) \cdot \text{Poiss}\left(C_{\mathbf{L}_{k}}|\beta_{\mathbf{L}_{k}}\right) \cdot \text{Poiss}\left(C_{\mathbf{R}_{k}}|\beta_{\mathbf{R}_{k}}\right)$$
$$\gamma_{\mathbf{S}} = \left(\varepsilon \cdot BR\right) \cdot m \cdot A + w_{S} \frac{\beta_{\mathbf{L}} + \beta_{\mathbf{R}}}{w_{\mathbf{L}} + w_{\mathbf{R}}}$$

- > Flat priors for background parameters and for activity parameter
- Posteriors produced with MCMC method (BAT toolkit) [Comp.Phys.Comm 180, 2197]

Presence of activity: report mode and the shortest 68.3% C.I.

Presence of activity, but too weak: report the 95.5% upper limit

Activity not present: report the 95.5% upper limit

Results – OFHC Cu sample

Saturation activities at sea level

Isotope	Half-life (d)	This work (µBq/kg)	Literature [App.Rad.Isot 67, 750] (µBq/kg)	ACTIVIA predictions (μBq/kg)
⁴⁶ Sc	83.8	27 (10)	25.2 (8.6)	36
⁴⁸ V	16.0	39 (17)	52 (19)	34
⁵⁴ Mn	312	154 (35)	394 (39)	170
⁵⁹ Fe	44.5	47 (15)	57 (14)	49
⁵⁶ Co	77.2	108 (15)	110 (14)	100
⁵⁷ Co	272	519 (100)	860 (190)	380
⁵⁸ Co	70.9	798 (60)	786 (43)	660
⁶⁰ Co	1925	340 (75)	1000 (90)	300

- General good agreement with predictions: deviations <30%</p>
- Our understanding of the CR flux and it's modeling is satisfactory
- Very good agreement with literature.

Results – Xe sample

Saturation activities at sea level

lsotope	Half-life	This work (μBq/kg)	ACTIVIA predictions (μBq/kg)
⁷ Be	53.2 d	370 (240)	6.4
¹⁰¹ Rh	3.3 yr	1420 (900)	17
¹²⁵ Sb	2.8 yr	590 (250)	0.2
¹²⁶	12.9 d	175 (90)	250
¹²⁷ Xe	36.3 d	1870 (280)	420

- Systematic underestimation of the production rates from predictions.
- ¹²⁷Xe activation observed also in LUX [Astropart.Phys. 62, 33] and in agreement with this dedicated measurement.
- ⁷Be, ¹²⁶I and ¹²⁷Xe will decay out in few months after the end of activation.
- ¹⁰¹Rh and ¹²⁵Sb are long lived and their impact in LXe targets must be evaluated.

Background impact in LXe target

¹⁰¹Rh, $T_{1/2}$ =3.3 y:

- Decays by EC, only γ-lines from the daughter isotope.
- The lowest energy γ-line is 127 keV, no background below this energy.
- All other low energy γ-lines sum up to higher energies by piling-up (time delays <1ns).
- No background contribution in the WIMP energy search region.

- > Decays by β emission, 13% end up in the 145 keV long-lived level of ¹²⁵Te (T_{1/2}=57.4d): event rejection not possible.
- Background for E<10keV not negligible: 3x10⁻²ev/keV/kg/day (dru) for 1mBq/kg of contamination.
- Tension with the LUX low-energy background [Astropart.Phys. 62, 33].
- Xe purification systems might remove efficiently this element.

Conclusions and outlook

- First activation measurement of xenon useful for next generations LXe based detectors for very-rare events search [under review in EPJ-C, available at arXiv:1507.03729].
- Out of 5 detected radio-isotopes from Xe activation only ¹⁰¹Rh and ¹²⁵Sb are potential issues.
- Dedicated measurements of the Xe excitation functions are needed for more reliable predictions.
- Xe activation by residual HE muons in UG laboratories could be a background issue:
 - Muon capture cross sections
 - HE muon production cross sections (spallation/fragmentation)

Thank you for your attention!

LXe based detectors for rare event searches

Dark matter direct searches

 $0v2\beta$ decay in ¹³⁶Xe

 $^{136}\mathrm{Xe} \rightarrow ^{136}\mathrm{Ba} + 2\mathrm{e}^-$

- High scintillation efficiency for 178 nm photons (~46 ph/keV)
- Expected higher WIMP nuclei scattering rate for low energy nuclear recoils: ~A²
- No medium lived radioisotopes: no intrinsic background.
- Long lived double beta emitters (or potential) are negligible sources of background:
 - > 124 Xe: T_{1/2} > 1.4x10¹⁴ y
 - > 126 Xe: $T_{1/2} = (5-12)x10^{25} y [J.Phys.G 34, 549]$
 - > 134 Xe: T_{1/2} > 5.8x10²² y
 - > 136 Xe: $T_{1/2} = 2.17(6)$ x10²¹ y [Phys.Rev. C 89, 015502]
- High atomic number (Z=54) + high density (~2.9 g/cm³) provide good self shielding from γ-rays background (mostly from detector's materials)