

Higgs Pseudo-Observables and Radiative Corrections

based on 1412.6038 1504.04018 1507.02555

Marzia Bordone

PSI, 27/08/2015

Pseudo-Observables

WHY?

 \Rightarrow need to encode experimental results in terms of a set of idealized observables theoretically well defined

FEATURES

 \Rightarrow can be matched with lagrangian parameters of any theory (SUSY, EFT....)

⇒ defined from kinematical properties of on-shell processes

First example of POs

One first set of POs for the Higgs properties is encoded in the κ -framework

Hyp: narrow width + on-shell Higgs

$$\sigma(ii \to h + X) \times BR(h \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_h} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_h^2} \sigma_{SM} \times BR_{SM}$$

First example of POs

 \Rightarrow well defined SM limits for $\kappa_i \rightarrow 1$

 \Rightarrow limited to total rates

(not suitable for multi body decays)

 \Rightarrow cannot describe possible deviation in differential distribution (such as CP violation)

need to extend this formalism to include all these effects

Higgs to 4-fermion decays

Hyp1: neglect helicity-violating interactions + Gauge and Lorentz invariance

Higgs to 4-fermion decays

Hyp2: neglecting short distance mode corresponding to local operators with d>6

 \Rightarrow we can expand the form factors around physical poles

Higgs to 4-fermion decays

Hyp2: neglecting short distance mode corresponding to local operators with d>6

 \Rightarrow we can expand the form factors around physical poles

$$\begin{split} F_1(q_1^2, q_2^2) &= \kappa_{ZZ} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^\mu}{P_Z(q_1^2)} + \frac{\epsilon_{Z\mu}}{m_Z^2} \frac{g_Z^e}{P_Z(q_2^2)} + \Delta_1^{\rm SM}(q_1^2, q_2^2) \\ F_3(q_1^2, q_2^2) &= \epsilon_{ZZ} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \kappa_{Z\gamma} \epsilon_{Z\gamma}^{\rm SM-1L} (\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)}) + \kappa_{\gamma\gamma} \epsilon_{\gamma\gamma}^{\rm SM-1L} \frac{e^2 Q_\mu Q_e}{q_1^2 q_2^2} + \Delta_3^{\rm SM}(q_1^2, q_2^2) \\ F_4(q_1^2, q_2^2) &= \epsilon_{ZZ}^{\rm CP} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \epsilon_{Z\gamma}^{\rm CP} (\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)}) + \epsilon_{\gamma\gamma}^{\rm CP} \frac{e^2 Q_\mu Q_e}{q_1^2 q_2^2} \end{split}$$

 $P_Z(q^2) = q^2 - m_Z^2 + im_Z\Gamma_Z$

SM-Limit: $\begin{aligned} \kappa_X \to 1 \\ \epsilon_X \to 0 \end{aligned}$

Radiative corrections

- soft+collinear photon \Rightarrow **IR div**
- IR div factorize for each dilepton couple

need of two conditions for IR div

$$(p_l + k_\gamma)^2 > m_*^2$$

$$x = \frac{m^2}{m_0^2} \Rightarrow 0 < x < x_{max}$$

 $\omega(x, x_*) = \omega_1(x, x_*)\theta(1 - x_* - x) + \omega_2(x, x_*)\delta(1 - x)$

$$\omega(x, x_*) = \omega_1(x, x_*)\theta(1 - x_* - x) + \omega_2(x, x_*)\delta(1 - x)$$
emission of a
real photon

above IR cut-off

leading order

$$(1-x) \ll 1$$
$$x_* \ll 1$$

$$\omega_1(x, x_*) = -\frac{\alpha}{\pi} \left(1 + x - \frac{2}{1 - x} \right) \log \left(\frac{2(1 - x) - x_*}{x_*} \right)$$
$$\omega_2(x, x_*) = 1 + \frac{\alpha}{\pi} \left[\frac{\pi^2}{3} - \frac{7}{2} - 3\log\left(\frac{x_*}{2}\right) - 2\log\left(\frac{x_*}{2}\right)^2 \right]$$

1

 $\omega_1 \Rightarrow \text{explicit calculation}$

$$\omega_2 \Rightarrow \text{obtained imposing} \quad \int_0^1 dx \ \omega(x, x_*) =$$

non radiative spectrum

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}m_{01}\mathrm{d}m_{02}\mathrm{d}x_1\mathrm{d}x_2} = F_0(m_{01}, m_{02})\omega(x_1, x_{1*})\omega(x_2, x_{2*})$$

one radiator for each dilepton couple

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}m_{01}\mathrm{d}m_{02}\mathrm{d}x_1\mathrm{d}x_2} = F_0(m_{01}, m_{02})\omega(x_1, x_{1*})\omega(x_2, x_{2*})$$

⇒ but we need the double differential spectrum respect to the physical invariant mass of the dilepton couples

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}m_{01}\mathrm{d}m_{02}\mathrm{d}x_1\mathrm{d}x_2} = F_0(m_{01}, m_{02})\omega(x_1, x_{1*})\omega(x_2, x_{2*})$$

⇒ but we need the double differential spectrum respect to the physical invariant mass of the dilepton couples

$$x_i \Leftrightarrow m_i \Rightarrow \frac{\mathrm{d}^2 \Gamma}{\mathrm{d} m_1 \mathrm{d} m_2}$$

Results

- good agreement of the spectrum dressed with QED correction the one obtained with full NLO correction
- the effect of QED correction in some region of the phase space are sizable so they have to be included when looking for NP
- at $\mathcal{O}(\alpha/\pi)$ correction to the ϵ parameter are small

Results

- 1. Deviation from SM points are small.
- 2. Deviation from SM spectrum are sizable but still the relative impact of QED correction in SM-like.
- Distortion from SM spectrum is sizable and the QED impact is not SMlike.

Conclusions

Presented a **general tool** to accomodate radiative corrections in the PO framework and applied to the higgs to 4 lepton decay

LO dressed with QED corrections in **agreement** with full NLO EW corrections at % level

New tool valid to describe NP at NLO (EW) accuracy