PhD Seminar August 26, 2015

#### Radiation tolerance of the readout chip for the Phase I upgrade of the CMS pixel detector

Jan Hoss





#### Outline

- The CMS pixel detector
- The Phase I upgrade of the pixel detector
- The readout chip and challenges for the upgraded chip
- Irradiation study: motivation and doses
- Test setups
- Selected results
- Summary and conclusion







# The CMS pixel detector

- Located in the center of CMS close to interaction point r = 4.4 to 10.2 cm (barrel part)
- Layer structure to provide 3D track of charged particles





CMS event display

CMS pixel detector

- 3 barrel layers, 2 layers per endcap
   → each layer provides 2D hit information
- 66 M readout channels
- Pixel size 100 x 150  $\mu$ m  $\rightarrow$  resolution:  $\approx$ 10  $\mu$ m in r $\phi$  , 24  $\mu$ m in z
- 40 MHz operation, trigger latency 3.2 μs

# The Phase I upgrade of the pixel detector

- Design luminosity of present detector: L=1·10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
- LHC: increase of center of mass energy √s=13 TeV and lumi. to L=2·10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - → upgrade of pixel detector required to avoid performance loss
- new features include:
  - Additional barrel layer and endcap
     → more hit points for improved vertex reconstruction
  - Innermost layer closer to interaction point (r = 3.0 cm)
  - Reduction of material budget, new CO<sub>2</sub> cooling
  - New readout chip with digital data transmission for increased readout speed

Goal: guarantee high detector performance under tightened conditions





Barrel pixel layout old/new [H.-C. Kaestli]

# The readout chip (ROC)

- 4160 pixel unit cells arranged in 26 double columns with periphery, buffers and digitizer
- Tasks of the ROC:
  - collect and process charge deposited in silicon sensor by charged particles
  - compare charge to adjustable threshold
     → zero suppression of data
  - notify ROC periphery to read out charge from pixel
  - Store hit information until L1 trigger validation
- Controlling of the ROC: 18 digital-analogconverters (DAC) and registers





Hybrid pixel concept [L. Rossi et al.]



# Challenges for the new digital ROC (Selection)

- Hit rate increases up to factor 5
  - → increase buffers for hit and time stamp information
  - → add additional readout buffer to avoid data loss during trigger latency
- Read out larger number of channels with only slightly increased number of readout links
  - $\rightarrow$  change from analog readout to 160 MHz digital readout
- Better charge sensitivity to increase lifetime of detector
  - $\rightarrow$  lower comparator threshold, reduced cross-talk and timewalk

New ROC design changes need to be validated by lab measurements, beam tests, and **irradiation studies** 

# Irradiation overview

- Irradiation of final CMS pixel readout chip for layers 2 4
- Test longevity and ensure good performance of the ROC throughout its foreseen 0.6 MGY .2 MGY 2.ª MG4 lifetime in highly radiative environment in CMS
- Target doses:
  - **0.6 MGy** (max. expected lifetime dose for layer 2 – 4 ROC)
  - **1.2 MGy** (layer 1 after 500 fb<sup>-1</sup>)
  - 2.4 MGy and 4.8 MGy
- 23 MeV proton beam at Zyklotron AG Karlsruhe
  - Stopping power 18.1 (MeV cm<sup>2</sup>)/g
  - Hardness factor  $\approx 2$
- Energy dose units: 1 rad = 0.01 Gy = 0.01 J/kg



layer 2, 500 fb<sup>-1</sup> layer 1, 500 fb<sup>-1</sup>





non-irradiated

irradiated (4.2 MGy)

| target<br>dose<br>(Mrad) | target<br>dose<br>(MGy) | Measured<br>dose<br>(MGy) | fluence<br>(1MeV<br>N <sub>eq</sub> /cm²) | fluence<br>(protons/<br>cm <sup>2</sup> ) |
|--------------------------|-------------------------|---------------------------|-------------------------------------------|-------------------------------------------|
| 60                       | 0.6                     | 0.5/0.6*                  | 0.4e15                                    | 0.2e15                                    |
| 120                      | 1.2                     | 1.1/1.5*                  | 0.8e15                                    | 0.4e15                                    |
| 240                      | 2.4                     | 2.2                       | 1.6e15                                    | 0.8e15                                    |
| 480                      | 4.8                     | 4.2                       | 3.2e15                                    | 1.6e15                                    |

\* single chip module and bare ROCs respectively

#### **Test setups**



climatic chamber setup

# **ROC properties to be tested after irradiation**

- Prerequisite for operating ROC after irradiation:
  - sufficient current supply and feeding voltages
  - DACs programmable
  - DAC ranges sufficient to find working point
- Important properties and performance parameters to test:
  - Band gap reference voltage shift
  - reading out test pulses and particle hits
  - Iow preamplifier noise
  - setting a low and uniform threshold and operating the ROC at this threshold
  - small timewalk for low in-time threshold
  - reading out analog pulse height information
  - high single pixel hit finding efficiency

#### Threshold

- Pixel detector: 66 million readout channels (increase by factor ≈2 with upgrade)
   → requires zero suppressed readout to keep data volume manageable
- Only charges exceeding the threshold of the pixel's comparator are read out

 $\rightarrow$  setting a low and uniform threshold is an important feature of the ROC

- Threshold can be adjusted ("trimmed") by:
  - setting global threshold DAC
  - setting "trim bits" for individual pixels



# Threshold

- Set same physical threshold before and after irradiation
- Threshold  $\approx$  1850 e (c.f. analog ROC 3500 e in-time threshold)
- data: mean of trimmed thres. distribution, error: width of distr.



- Low and uniform threshold can be set for all samples up to 4.2 MGy
- Width of trimmed threshold distribution about 70 electrons after 4.2 MGy
- Not for granted! Inhomogeneous threshold after irradiation due to insufficient dynamic range of global threshold DAC for intermediate ROC version

# Hit finding efficiency

- Measure hit finding efficiency while sample is exposed to high rate X-radiation to create additional readout traffic
- Analysis: split hits from xrays and hits from test pulses
  - xrays: overall ROC hit rate calculation
  - test pulses: calculate test pulse detection efficiency
- No significant change in efficiency observed up to 1.1 MGy
- Efficiency better than 99% at expected layer 2 hit rate of 120 MHz/cm<sup>2</sup>
- Samples trimmed to low thresholds
  - $\approx$  1850 electrons up to 0.5 MGy
  - ≈ 2100 electrons at 1.1 MGy
  - $\rightarrow$  high efficiency at low threshold up to expected layer 1 dose





- The CMS pixel detector will be replaced in winter 2016/2017
- The new digital ROC for layers 2 4 shows excellent radiation tolerance, no problems observed up to expected lifetime dose of 0.6 MGy
- Results of several irrad. campaigns contributed to the design of the ROC and triggered further modifications for the layer 1 ROC
- Results contributed to the decision process to define the detector's supply voltages
- Results show that it is feasible to operate the ROC efficiently after receiving the expected layer 1 dose

#### Back up

# **Digital current**

Digital current vs Vdig



- Idig increase for low Vdig around ≈ 10% (vbg shift)
- Additional increase for high Vdig at high dose

# Band gap reference voltage

- Band gap voltage serves as reference for all DACs on the ROC
   → shift leads to changes in all DAC settings
- Measurement of vbg on all samples before and after irradiation



- Saturation above 2 MGy observed
- Vbg shift used to correct test pulse strengths and threshold settings after irradiation

# **Analog current**



- ROC working point at I<sub>ana</sub> = 24 mA (can be set with Vana DAC)
- I<sub>ana</sub> saturates at dose dependent level
- Maximum I<sub>ana</sub> close or below 24 mA working point for dose >= 2.2 MGy for unreg. analog voltage 1.6 V
- Saturation level depends on unregulated analog voltage va
- max I<sub>ana</sub> sufficient for:
  - va = 1.7 (1.8) V for 2.2 MGy (4.2 MGy)
  - $\rightarrow$  operate highly irradiated samples at elevated analog voltage

# Shaper recovery time

- Shaper gets slower after irradiation
- Need to adjust shaper feedback to read out test pulses
- Quantify effect of irradiation:
  - Send two test pulses with time Δt in between
  - Trigger on 2<sup>nd</sup> pulse
  - Measure for which ∆t and which shaper feedback setting 2<sup>nd</sup> pulse can be read-out
- Enough dynamic range to adjust feedback after 0.6 MGy
- For higher doses: dose-dependent minimum Δt between pixel hits



18

#### **Basic test pulse readout**

Most simple test: try to read out test pulse injected to pixel



- Efficient readout of test pulse for all samples up to dose of 4.2 MGy
- No significant problems with pixel defects observed

#### **Amplifier noise**

- Measure turn-on of #read-out pulses vs test pulse strength
   → smeared out step function around threshold
- Smearing due to preamp noise

   → quantify noise using width of
   fitted error function
- Convert test pulse strength unit (Vcal Dac setting) into number of electrons using an energy calibration with mono-chromatic x-radiation as reference energies
  - 1 Vcal unit = 46.4 electrons



# **Amplifier noise**

- data: mean noise per ROC, error: width of noise distribution
- Conversion based on 46.4 e/Vcal and corrected with band gap voltage shift
- No problems observed for relevant doses in spite of possibly under-depleted sensor
- Noise well below 200 electrons even after 4.2 MGy
- Decrease of noise for 0.5 and 1.1 MGy understood (due to changed preamp and shaper feedback ratio)



#### Noise - bare ROCs

- No influence of possibly under-depleted sensor and leakage current
- Measure Vcal scurve width
- Conversion based on 46.4 e/Vcal and band gap voltage shift

| Dose (MGy) | Noise (e) |
|------------|-----------|
| 0          | 78.55     |
| 0.6        | 79.10     |
| 1.5        | 88.76     |

 Noise unchanged after 0.6 Mrad, 13% increase after 1.5 MGy



#### Noise - bare ROCs (2)

- First qualification done with VwllPr = 80 (changed in sync with VwllSh)
- Later: found that only VwllSh has to be lowered → qualification with VwllPr = 220
- Noise about 35% lower for weaker preamp feedback!
- Can noise be lowered for unirradiated ROCs by changing preamp and shaper feedback ratio?



# **Comparator timing (timewalk)**

- Timing difference between small and large signal in comparator
- Important: timewalk < 25 ns → prevent hit migration to wrong bunch crossing



- threshold 1850 e, large signal: 83000 e, small signal: 2300 e
- Threshold, and signal strengths corrected for band gap drift after irradiation
- Timewalk well below 25 ns for signals between 2300 and 83000 electrons up to 4.2 MGy
  - $\rightarrow$  no need to artificially increase threshold to limit timewalk

# **Pulse height**

- Not a binary detector: analog pulse height (PH) information for each hit used to improve spacial resolution by weighting charges within hit clusters
- PH should be linear function of deposited charge (up to preamp saturation)
- Measure maximum delta PH
- Delta PH optimal after 0.6 MGy for default unreg. digital voltage
- For higher doses: Delta PH limited because of increased voltage regulator drop-out
- Can be partly recovered with higher supply voltage
- Design change implemented in layer 1 ROC to stabilize delta PH vs dose



# **Pulse height**

- Analog pulse height (PH) used to improve spatial resolution by weighting charges in pixel clusters
- Different signal charges should lead to different PH outputs (ADC counts)
- Bug fix in digV2.1respin: disentangled Vdig and pulse height
- Irradiation digV2.1: limited PH ADC coverage after 1.2 MGy
   → had to increase Vdig to recover
- What is the maximum PH difference of Vcal 50 low range and Vcal 255 high range after irradiation?



#### Pulse height – layer 2 dose

- Maximum delta PH depends on PHScale and PHOffset
- Sample trimmed as in slide 9
- Full coverage up to 0.5 MGy, standard settings Vdig 6, vd 2400 mV





# Pulse height - vd dependence



#### Pulse height - layer 1 dose



 PH cannot be stretched below a certain ADC minimum after ROC received 1.1 MGy if digital voltage is too low → regulator drop-out too large

# **Depletion voltage**

- For SCM: need to find bias voltage setting after irradiation
- Measure depletion voltage:
  - Trim sample to low threshold
  - Expose sample to high energetic mono-chromatic X-radiation (Ba 32 keV → 8900 electrons)
  - Measure number of hits vs bias → should saturate at depletion voltage



- Depletion before irrad. at -60 V
- Depletion after 0.5 MGy at -400 V
- Unclear behavior for 1.1 MGy samples
- Samples with dose > 0.5 MGy probably under-depleted at bias -400V

#### Leakage current

Leakage current at -20C



- Leakage current increases approx. linearly with dose after type inversion
- Exception: dose 4.2 MGy leakage current smaller than at 2.2 MGy below 300 V. Why?

# High rate efficiency loss mechanisms

