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Outline

 The CMS pixel detector

 The Phase I upgrade of the pixel detector

 The readout chip and challenges for the 
upgraded chip

 Irradiation study: motivation and doses

 Test setups

 Selected results

 Summary and conclusion
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The CMS pixel detector

 Located in the center of CMS 
close to interaction point
r = 4.4 to 10.2 cm (barrel part)

 Layer structure to provide 3D 
track of charged particles

 3 barrel layers, 2 layers per endcap
→ each layer provides 2D hit information

 66 M readout channels

 Pixel size 100 x 150 μm 
→ resolution: ≈10 μm in rφ , 24 μm in z

 40 MHz operation, trigger latency 3.2 μsCMS event display

CMS pixel detector

CMS detector
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The Phase I upgrade of the pixel 
detector

 Design luminosity of present 
detector:  L=1·1034 cm-2s-1

 LHC: increase of center of mass 
energy √s=13 TeV and lumi. to 
L=2·1034 cm-2s-1

→ upgrade of pixel detector 
required to avoid performance 
loss

 new features include:
 Additional barrel layer and endcap 

→ more hit points for improved vertex reconstruction

 Innermost layer closer to interaction point (r = 3.0 cm)

 Reduction of material budget, new CO2 cooling

 New readout chip with digital data trans-
mission for increased readout speed

Barrel pixel layout 
old/new [H.-C. Kaestli]

LHC schedule as of June 2015 [F. Bordry]

Phase I 
upgrade

Goal: guarantee high detector performance 
under tightened conditions
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The readout chip (ROC)

 4160 pixel unit cells arranged in 26 double 
columns with periphery, buffers and digitizer

 Tasks of the ROC: 
 collect and process charge deposited in silicon sensor 

by charged particles
 compare charge to adjustable threshold 

→ zero suppression of data
 notify ROC periphery to read out charge from pixel
 Store hit information until L1 trigger validation

 Controlling of the ROC: 18 digital-analog-
converters (DAC) and registers

Hybrid pixel concept 
[L. Rossi et al.]

amplify shape

compare to
threshold

Intermediate
storage

send data  
buffers

Pixel unit 
cell of the ROC 

[F. Meier]

ROC components [F. Meier]
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Challenges for the new digital ROC
(Selection)

New ROC design changes need to be validated by
lab measurements, beam tests, and irradiation studies

 Hit rate increases up to factor 5
 → increase buffers for hit and time stamp information

 → add additional readout buffer to avoid data loss during trigger 
    latency

 Read out larger number of channels with only slightly increased 
number of readout links
 → change from analog readout to 160 MHz digital readout

 Better charge sensitivity to increase lifetime of detector
 → lower comparator threshold, reduced cross-talk and timewalk
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Irradiation overview

 Irradiation of final CMS pixel readout chip for layers 2 – 4

 Test longevity and ensure good performance of the ROC 
throughout its foreseen 
lifetime in highly radiative 
environment in CMS

 Target doses:
 0.6 MGy (max. expected life-

time dose for layer 2 – 4 ROC)

 1.2 MGy (layer 1 after 500 fb-1)

 2.4 MGy and 4.8 MGy

 23 MeV proton beam at 
Zyklotron AG Karlsruhe
 Stopping power 18.1 (MeV cm2)/g

 Hardness factor ≈ 2

 Energy dose units: 
1 rad = 0.01 Gy = 0.01 J/kg

0 
M
Gy
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6 

M
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1.
2 

M
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2.
4 

M
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4.
8 

M
Gy

layer 1, 500 fb-1

target
dose 
(Mrad)

target
dose 
(MGy)

Measured 
dose 
(MGy)

fluence 
(1MeV 
N

eq
/cm2)

fluence 
(protons/
cm2)

60 0.6 0.5/0.6* 0.4e15 0.2e15

120 1.2 1.1/1.5* 0.8e15 0.4e15

240 2.4 2.2 1.6e15 0.8e15

480 4.8 4.2 3.2e15 1.6e15

* single chip module and bare ROCs respectively

irradiated (4.2 MGy)non-irradiated

layer 2, 500 fb-1
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Test setups

 Two setups to test irradiated samples at controlled temperature 
and humidity
 Climatic chamber for electrical test

 x-ray setup to generate charge in Si sensor 
with x-rays

 Read out samples with digital test board 
and dedicated readout 
software

climatic chamber setup

X-ray setup

sample

test board

USB to PC
sensor bias

cooling plate

X-ray tubefluorescence 
materials

continuous 
spectrum

mono-
chromatic 
x-radiation
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ROC properties to be tested after 
irradiation

 Prerequisite for operating ROC after irradiation: 
 sufficient current supply and feeding voltages

 DACs programmable 

 DAC ranges sufficient to find working point

 Important properties and performance parameters to test:
 Band gap reference voltage shift

 reading out test pulses and particle hits

 low preamplifier noise

 setting a low and uniform threshold and operating the ROC at 
this threshold

 small timewalk for low in-time threshold

 reading out analog pulse height information

 high single pixel hit finding efficiency
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Threshold

 Pixel detector: 66 million readout 
channels (increase by factor ≈2 
with upgrade) 
→ requires zero suppressed readout 
to keep data volume manageable

 Only charges exceeding the 
threshold of the pixel's comparator 
are read out
→ setting a low and uniform 
threshold is an important feature of 
the ROC

 Threshold can be adjusted 
(“trimmed”) by:
 setting global threshold DAC

 setting “trim bits” for individual 
  pixels

pixel threshold (a.u.)

untrimmed ROC 

trimmed ROC 
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Threshold

 Set same physical threshold before and after irradiation 

 Threshold ≈ 1850 e (c.f. analog ROC 3500 e in-time threshold) 

 data: mean of trimmed thres. distribution, error: width of distr.

 Low and uniform threshold can be set for all samples up to 4.2 MGy

 Width of trimmed threshold distribution about 70 electrons 
after 4.2 MGy 

 Not for granted! Inhomogeneous threshold after irradiation due to 
insufficient dynamic range of global threshold DAC for intermediate 
ROC version 

outdated ROC version!final ROC versionfinal ROC version

th
re

sh
o
ld

 (
a
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Hit finding efficiency

 Measure hit finding efficiency while sample is exposed to high 
rate X-radiation to create additional readout traffic

 Analysis: split hits from xrays and hits from test pulses
 xrays: overall ROC hit rate calculation

 test pulses: calculate test pulse 
detection efficiency

 No significant change in efficiency 
observed up to 1.1 MGy

 Efficiency better than 99% at 
expected layer 2 hit rate of 
120 MHz/cm2 

 Samples trimmed to low thresholds
 ≈ 1850 electrons up to 0.5 MGy

 ≈ 2100 electrons at 1.1 MGy 

→ high efficiency at low threshold 
up to expected layer 1 dose

expected layer 
2 hit rate

X-ray hitstest pulse
 hits

xray hits
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Summary

 The CMS pixel detector will be replaced in winter 2016/2017

 The new digital ROC for layers 2 – 4 shows excellent radiation 
tolerance, no problems observed up to expected lifetime 
dose of 0.6 MGy

 Results of several irrad. campaigns contributed to the design of the 
ROC and triggered further modifications for the layer 1 ROC

 Results contributed to the decision process to define the detector's 
supply voltages

 Results show that it is feasible to operate the ROC efficiently after 
receiving the expected layer 1 dose
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Back up
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Digital current

 Digital current vs Vdig

 Idig increase for low Vdig around ≈ 10% (vbg shift)

 Additional increase for high Vdig at high dose
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Band gap reference voltage

 Band gap voltage serves as reference for all DACs on the ROC
→ shift leads to changes in all DAC settings

 Measurement of vbg on all samples before and after irradiation 

 Saturation above 2 MGy observed

 Vbg shift used to correct test pulse strengths and threshold 
settings after irradiation
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Analog current

 ROC working point at Iana = 24 mA (can be set with Vana DAC)

 Iana saturates at dose dependent level

 Maximum Iana close or below 24 mA working point for 
dose >= 2.2 MGy for unreg. analog voltage 1.6 V

 Saturation level depends on unregulated analog voltage va

 max Iana sufficient for:

 va = 1.7 (1.8) V for 2.2 MGy (4.2 MGy)

→ operate highly irradiated samples at elevated analog voltage

4.2 MGy

va 1600 mV

va 1800 mV

va 1700 mV
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Shaper recovery time

 Shaper gets slower after 
irradiation

 Need to adjust shaper 
feedback to read out test 
pulses

 Quantify effect of irradiation:
 Send two test pulses with time 

Δt in between

 Trigger on 2nd pulse

 Measure for which Δt and which 
shaper feedback setting 2nd pulse can 
be read-out

 Enough dynamic range to adjust 
feedback after 0.6 MGy

 For higher doses: dose-dependent 
minimum Δt between pixel hits

time

calcal cal trig

Δt trigger delay
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Basic test pulse readout

 Most simple test: try to read out test pulse injected to pixel

 Efficient readout of test pulse for all samples up to dose of 4.2 MGy

 No significant problems with pixel defects observed

Dose 4.2 MGy

Number of read out test 
pulse hits in pixel array

Single pixel: working 
point in threshold – test 

pulse delay space

dose dependent width of 
efficiency window in DAC units:

effect of band-gap drift

test pulse delay (a.u.)

th
re

sh
o
ld

 (
a
.u

.)
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Amplifier noise

 Measure turn-on of #read-out 
pulses vs test pulse strength 
→ smeared out step function 
around threshold

 Smearing due to preamp noise 
→ quantify noise using width of 
fitted error function

 Convert test pulse strength unit 
(Vcal Dac setting) into number 
of electrons using an energy 
calibration with mono-chromatic 
x-radiation as reference 
energies 
 1 Vcal unit = 46.4 electrons

test pulse strength (Vcal DAC units)

re
a
d

o
u

ts
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Amplifier noise

 data: mean noise per ROC, 
error: width of noise 
distribution 

 Conversion based on 46.4 
e/Vcal and corrected with 
band gap voltage shift

 No problems observed for 
relevant doses in spite of 
possibly under-depleted 
sensor

 Noise well below 200 
electrons even after 4.2 MGy

 Decrease of noise for 0.5 and 
1.1 MGy understood
(due to changed preamp and 
shaper feedback ratio)
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Noise – bare ROCs

 No influence of possibly under-depleted sensor and leakage 
current

 Measure Vcal scurve width

 Conversion based on 46.4 e/Vcal and band gap voltage shift

Dose (MGy) Noise (e)

0 78.55

0.6 79.10

1.5 88.76

 Noise unchanged after 0.6 
Mrad, 13% increase after 
1.5 MGy
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Noise – bare ROCs (2)

 First qualification done with VwllPr = 80 (changed in sync with 
VwllSh)

 Later: found that only VwllSh has to be lowered → qualification 
with VwllPr = 220

 Noise about 35% lower 
for weaker preamp 
feedback!

 Can noise be lowered for 
unirradiated ROCs by 
changing preamp and 
shaper feedback ratio?
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Comparator timing (timewalk)

 Timing difference between small and large signal in comparator

 Important: timewalk < 25 ns → prevent hit migration to wrong 
bunch crossing

 threshold 1850 e, large signal: 83000 e, small signal: 2300 e

 Threshold, and signal strengths corrected for band gap drift after 
irradiation

 Timewalk well below 25 ns for signals between 2300 and 83000 
electrons up to 4.2 MGy

→ no need to artificially increase threshold to limit timewalk

p
u

ls
e

time

threshold

timewalk

test pulse delay (a.u.)

te
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Pulse height

 Not a binary detector: analog pulse 
height (PH) information for each hit 
used to improve spacial resolution by 
weighting charges within hit clusters

 PH should be linear function of 
deposited charge (up to preamp 
saturation)

 Measure maximum delta PH

 Delta PH optimal after 0.6 MGy for 
default unreg. digital voltage

 For higher doses: Delta PH limited 
because of increased voltage regulator 
drop-out

 Can be partly recovered with higher 
supply voltage

 Design change implemented in layer 1 
ROC to stabilize delta PH vs dose

0.5 MGy
Vdig 6, vd 2400

X

X

delta PH

test pulse strength (a.u.)
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Pulse height

 Analog pulse height (PH) used to 
improve spatial resolution by 
weighting charges in pixel clusters

 Different signal charges should lead 
to different PH outputs (ADC counts)

 Bug fix in digV2.1respin: 
disentangled Vdig and pulse height

 Irradiation digV2.1: limited PH ADC 
coverage after 1.2 MGy 
→ had to increase Vdig to 
recover

 What is the maximum PH 
difference of Vcal 50 low 
range and Vcal 255 high 
range after irradiation?

Vcal 200

blue: digV2.1
red: digV2.1respin

unirradiated

X

X

delta PH
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Pulse height – layer 2 dose

 Maximum delta PH depends 
on PHScale and PHOffset

 Sample trimmed as in slide 9

 Full coverage up to 0.5 MGy, 
standard settings Vdig 6, vd 2400 mV

unirradiated
Vdig 6, vd 2400

0.5 MGy
Vdig 6, vd 2400

X

X

delta PH

0.5 MGy
Vdig 6, vd 2400
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Pulse height – vd dependence

 1.1 MGy: 
limited PH 
coverage

 PH spread  
improved for 
Vdig 6 → 15

 Further 
improvement 
if vd is 
increased

1.1 MGy
Vdig 15, vd 2500

1.1 MGy
Vdig 6, vd 2400

1.1 MGy
Vdig 15, vd 2400

1.1 MGy
Vdig 15, vd 2600
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Pulse height – layer 1 dose

 PH cannot be stretched below a certain ADC minimum after ROC 
received 1.1 MGy if digital voltage is too low → regulator drop-out 
too large

1.1 MGy
Vdig 15, vd 2500

1.1 MGy
Vdig 6, vd 2400

1.1 MGy
Vdig 15, vd 2400

Working point:
PHScale: 7
PHOffset 75

Working point:
PHScale: 25
PHOffset 90

Working point:
PHScale: 40
PHOffset 90
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Depletion voltage

 For SCM: need to find bias voltage setting after irradiation

 Measure depletion voltage:
 Trim sample to low threshold

 Expose sample to high energetic mono-chromatic X-radiation (Ba 32 
keV → 8900 electrons)

 Measure number of hits vs bias → should saturate at depletion voltage

 Depletion before irrad. at -60 V

 Depletion after 0.5 MGy at -400 V

 Unclear behavior for 1.1 MGy 
samples

 Samples with dose > 0.5 MGy 
probably under-depleted at bias 
-400V
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Leakage current

 Leakage current at -20C

 Leakage current increases approx. linearly with dose after type 
inversion

 Exception: dose 4.2 MGy leakage current smaller than at 2.2 MGy 
below 300 V. Why? 
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High rate efficiency loss mechanisms

[M. Rossini]
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