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Top quark

Mass of the top quark obtained through combining the
measurements at the Tevatron and LHC colliders is
mt = 173.34± 0.27 (stat) ± 0.71 (syst) GeV
[ATLAS and CDF and CMS and D0 Collaborations (2014)].

I Strong coupling to the Higgs boson
I Crucial to the hierarchy problem
I Decays before hadronization, allowing for a better

experimental measurements.



Top quark pair production

I The top quark pair production is the main source of the top
quark events in the Standard Model (SM).

I Many New Physics models involve heavy top partners
which then decay into a top quark pair.

The study of t t̄ pair production at hadron colliders can
I shed light on the electroweak symmetry breaking

mechanism.
I provide information on the backgrounds of many NP

models.



QCD corrections

Theoretical efforts for obtaining precision predictions for t t̄
production at hadron colliders started almost 3 decades ago

I NLO QCD corrections are calculated by [Nason, Dawson and
Ellis (1988), Beenakker, Kuijf, van Neerven and Smith (1989),
Beenakker, van Neerven, Meng, Schuler and Smith (1989)].

I Recently the calculation of the full NNLO QCD corrections was
completed for the total cross section and for the t t̄ asymmetry.
[Barnreuther, Czakon, Mitov (2012), Czakon, Mitov (2012), Czakon,
Mitov (2013), Czakon, Fiedler, Mitov (2013), Czakon, Fiedler, Mitov
(2014)].

I Precision result for the invariant mass distribution is worked out
in [Ahrens, Ferroglia, Neubert, Pecjak, Yang].

I Other computations of differential distributions are underway
[Abelof, Gehrmann-De Ridder, Maierhofer (2014), Abelof,
Gerhrmann-de Ridder (2014), Abelof, Gehrmann-De Ridder and
Majer (2015)].



qT distribution

I When q2
T ∼ M2, αS(M2) is small, and the standard fixed

order expansion is theoretically justified.
I When q2

T � M2 large logarithms of the form
αn

S log(M2/q2
T ) appear, due to soft and collinear gluon

emissions. Effective expansion variable is the
αn

S log(M2/q2
T ), which can be ∼ 1 even for small αS. These

large logarithms need to be resummed to all orders in αS,
in order to get reliable predictions over the whole range of
the transverse momenta.

The resummation of large logs results in exponentiating these
large logarithmic terms

σ(res) ∼ σ(0)C(αS)exp {Lg1(αSL) + g2(αSL) + αSg3(αSL) + . . .} .

LL NLL NNLL�
��>

hard-virtual



Resummation for the t t̄ production

I The first attempt to develop a qT -resummation formalism at
next-to-leading logarithmic (NLL) accuracy for t t̄ production
was done in [Berger, Meng (1994), Mrenna, Yuan (1997)].
However, they did not consider color mixing between
singlet and oktet final states and missed the initial-final
gluon exchange.

I Recently the resummation for the t t̄ qT spectrum, based
on soft collinear effective theory (SCET), was performed at
NNLL+NLO. [Zhu, Li, Li, Shao, Yang (2013)]. This work is limited
to the study of the qT cross section after integration over
the azimuthal angles of the produced heavy quarks.

I Last year the qT -resummation in QCD was performed at
the fully-differential level with respect to the kinematics of
the produced heavy quarks. [Catani, Grazzini, Torre (2014)].
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Azimuthal correlations

• Production of a colorless system
I The gluonic collinear functions are the only source of

azimuthal correlations

Cµν
ga (z; p1,p2,b) = dµ,ν(p1,p2)Cga(z)+Dµ,ν(p1,p2; b)Gga(z)

• Top-quark pair production
∆(b,M; y34, φ3) = V†(b,M; y34)D (αS;φ3b, y34) V(b,M; y34) .

I Additional azimuthal correlations produced by the dynamics
of soft-parton radiation, embodied in D.

D (αS;φ3b, y34) = 1 +
αS

π
D(1) (φ3b, y34) +O(α2

S)

〈D
(
αS

(
b2

0/b
2
)

;φ3b, y34

)
〉av. = 1 -vanishing contribution to 〈σ〉av.at O(αS)

But contributes at O(α2
S) due to the interference of the

initial-final state azimuthal correlations
-non-trivial integration over the azimuthal angle (computed analytically!)



qT -subtraction
Knowledge of the low qT limit is essential also for the fixed
order calculation in the qT -subtraction formalism.
qT -subtraction formalism has been originally proposed for the
production of colourless high-mass systems in hadron
collisions. [Catani, Grazzini (2007)].
This subtraction formalism has been successfully applied to number
of important processes of this class.

I pp → H [Catani, Grazzini (2007)].

I pp → V . [Catani, Cieri, Ferrera, de Florian, Grazzini (2009)].

I pp → γγ. [Catani, Cieri, Ferrera, de Florian, Grazzini (2011)].

I pp →WH. [Ferrera, Grazzini, Tramontano (2011)].

I pp → Zγ. [Grazzini, Kallweit, Rathlev, Torre (2013)].

I pp → ZZ . [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von
Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs (2014)].

I pp →W +W −. [Gehrmann, Grazzini, Kallweit, Maierhöfer, von
Manteuffel, Pozzorini, Rathlev, Tancredi (2014)].

I pp → ZH. [Ferrera, Grazzini, Tramontano (2014)].



qT -subtraction for t t̄

I The fully differential cross section at N(NLO):

dσt t̄
N(NLO) = Ht t̄

N(NLO) ⊗ dσt t̄
LO +

[
dσt t̄+jet

N(LO) − dσCT
N(LO)

]
.

Regular as qT → 0

I Ht t̄
N(NLO) is the hard factor, which contains information on

the virtual corrections to the LO process.
I dσt t̄

LO is the Born cross section.

I dσt t̄+jet
N(LO) is the N(LO) cross section of t t̄+jet(s) process.

I dσCT
N(LO) is the counterterm, which can be derived by

expanding the resummation formula.



Our implementation

Up to NLO our implementation is based on
I The scattering amplitudes and phase space generation of

MCFM program.
I We use the corresponding routines of the Higgs boson

production code HNNLO and the vector boson production
code DYNNLO, suitably modified for t t̄ production.

At NNLO accuracy the t t̄ + jet cross section is evaluated by
using the MUNICH code which provides:

I Fully automatic implementation of the NLO dipole
subtraction formalism.

I Interface to the OPENLOOPS one-loop generator.

We are grateful to D. Rathlev and S. Kallweit for their help with
the MUNICH program.



Results at NLO

I Distributions for the t t̄ system.

I Very good agreement!



Results at NLO

I Distributions for the top quark.

I Very good agreement!



Results at NNLO

Cross section [pb] O(α4
S)qg O(α4

S)q(q̄)q′

qT subtraction -2.25(5) 0.151(3)
Top++ -2.253 0.148

Table : O(α4
S) contribution to the total cross section for t t̄ production

at the LHC at
√

s = 8 TeV.

Cross section [pb] O(α4
S)qg O(α4

S)q(q̄)q′

qT subtraction -61.5(5) 1.33(1)
Top++ -61.53 1.33

Table : O(α4
S) contribution to the total cross section for t t̄ production

at the LHC at
√

s = 2 TeV.

qg = qg + q̄g, q(q̄)q′ = qq + q̄q̄ + qq′ + q̄q̄′ + qq̄′ + q̄q′



Summary
I I have briefly discussed the all-order qT -resummation for

the heavy-quark production at hadron colliders, worked out
in [Catani, Grazzini, Torre (2014)].

I We have used the knowledge of the low qT behaviour of
the amplitudes to extend the qT subtraction method for t t̄
production at hadron colliders.

I We have compared our results at NLO with MCFM
program for various distributions. At NNLO we have
compared our results for the total cross section in all the
non-diagonal channels to TOP++ program. In both cases
we have found a good agreement.

I The extension of our NNLO computation to include the
missing qq̄ → t t̄ + X and gg → t t̄ + X channels requires
the evaluation of the second-order hard-collinear functions
Ht t̄

NNLO, and an implementation of the two-loop virtual
amplitudes, which, at present, are known only in numerical
form.


