

Dark Matter produced in association with top quark pair

Deborah Pinna Supervisor: Prof. Florencia Canelli

Zurich PhD seminar August 26th - 27th 2015

Introduction

• Dark Matter (DM) empirical evidence for new physics beyond Standard Model (SM)

singular galaxies rotation curves constant beyond luminous region

- velocity is expected to go like r ^{-1/2}
- differences explained by non luminous mass
- Studies at different scales provide measurements that universe is composed mainly of non-baryonic matter
 - DM abundance ~24% of the universe, five times the amount of baryonic matter
- Discovery potential enhanced with an interplay and complementarity among different experiments:
 - direct searches
 - indirect searches
 - searches for production of DM at colliders

Dark Matter signatures at LHC

In p-p collisions DM could be produced at CMS: very stable weakly interacting particle

- Missing Transverse Energy (MET): energy imbalance observed in the plane transverse to the colliding proton beams
- Recoil: searches for DM need also visible particles in the event to which DM particle recoil against

If DM interacts with SM sectors different type of interactions can be assumed

Some interactions can be enhanced if DM-SM couplings are Yukawa type? T. Lin et al., 1303.6638

• DM interactions with top quarks would be favored and discovery potential increased

scalar interaction of Dirac DM χ with a quark $q \rightarrow$

$$\rightarrow \frac{m_q}{M_*^3} \bar{\chi} \chi \bar{q} q$$

• search never performed in CMS

Interpretation of results

Large variety of DM candidates

- essential model-independent DM searches
- 1) Effective Field Theory (EFT): interaction parametrized by effective operators
 - EFT approach valid when the momentum transferred Q_{tr} small compared to cutoff scale M*,

<u>G. Busoni et al., 1402.1275</u>

 in p-p collisions at LHC Q_{tr} could be of order of TeV, details of mediator are resolved

- UV completion condition
$$M_* = \left(\frac{m_q M^2}{q_1 q_2}\right)^{1/3}$$

->> Solution is to consider explicitly the mediator

2) Simplified models: explicit mediator considered

Simplified model

Interpretation of results

Large variety of DM candidates

- essential model-independent DM searches
- 1) Effective Field Theory (EFT): interaction parametrized by effective operators
 - EFT approach valid when the momentum transferred Q_{tr} small compared to cutoff scale M_{*},

 $Q_{tr} << M_*$ <u>G. Busoni et al., 1402.1275</u>

- in p-p collisions at LHC Q_{tr} could be of order of TeV, details of mediator are resolved
- UV completion condition $M_* = \left(\frac{m_q M^2}{a_1 a_2}\right)^{1/3}$

2) Simplified models: explicit mediator considered

Simplified model

(1) Selection of topology

1 lepton, at least 3 jets, at least 1 b-tagged

(2) Rejection of background

(3) Extract normalization for background

<u>tt+jets, W+jets</u>: from data

(1) Selection of topology

1 lepton, at least 3 jets, at least 1 b-tagged

- (2) Rejection of background
 - Most W+jets and tt+jets semi-leptonic events M_T < M_W. Signal events distribution peaks at higher values

$$M_T = \sqrt{2p_T^{lep} E_T^{miss} (1 - \cos(\Delta \phi))} > 160 \text{ GeV}$$

(3) Extract normalization for background

tt+jets, W+jets: from data

(1) Selection of topology

1 lepton, at least 3 jets, at least 1 b-tagged

- (2) Rejection of background
 - The jets and the MET tends to be more separated in Φ in signal events than in tt and in single top events

min(ΔΦ_{j1,MET}, ΔΦ_{j2,MET}) > 1.2 GeV

(3) Extract normalization for background

tt+jets, W+jets: from data

(1) Selection of topology

1 lepton, at least 3 jets, at least 1 b-tagged

- (2) Rejection of background
 - For most tt+jets di-leptonic events M_{T2W} < M_{top}. Signal events distribution shows higher tails

M^WT2 > 200 GeV

(see slide 27)

M^WT2:

minimal mother particle mass compatible with assumed event topology and daughter mass

(1) Selection of topology

1 lepton, at least 3 jets, at least 1 b-tagged

- (2) **Rejection of background**
 - signal has large MET from DM particles which escape detector

MET > 320 GeV

(3)Extract normalization for background tt+jets, W+jets: from data

(1) Selection of topology

1 lepton, at least 3 jets, at least 1 b-tagged

(2) **Rejection of background**

> based on topology differences between bkg and signal

(3) Extract normalization for background

tt+jets, W+jets: from data

EFT DM + tt ($\rightarrow blv, bjj$) at 8 TeV

(4) Final yields: no excess in data w.r.t SM predictions

(5) Results

- 90% CL lower limits on interaction scale M* for scalar interaction

- \rightarrow assuming 100 GeV mass DM particle, M* below 118 GeV is excluded
- \rightarrow excludes DM+tt production cross section > 55 fb for 1 GeV and > 20 fb for 1 TeV
- \rightarrow excludes DM-nucleon cross section > 1-2×10⁻⁴² cm² for 1-6 GeV DM masses

Deborah Pinna - UZH

University of

EFT DM + tt ($\rightarrow blv, bjj$) at 8 TeV

(4) Final yields: no excess in data w.r.t SM predictions

(5) Results

- 90% CL lower limits on interaction scale M* for scalar interaction
 - → assuming 100 GeV mass DM particle, M^{*} below 118 GeV is excluded
 - \rightarrow excludes DM+tt production cross section > 55 fb for 1 GeV and > 20 fb for 1 TeV
 - \rightarrow excludes DM-nucleon cross section > 1-2×10⁻⁴² cm² for 1-6 GeV DM masses

University of

Zurich^{∪z+}

(5) Results

- 90% CL lower limits on interaction scale M* for scalar interaction
 - → assuming 100 GeV mass DM particle, M* below 118 GeV is excluded
 - \rightarrow excludes DM+tt production cross section > 55 fb for 1 GeV
 - \rightarrow excludes DM-nucleon cross section > 1-2×10⁻⁴² cm² for 1-6 GeV DM masses

University of

(5) Results

- first CMS results for this channel
- gained experience to develop further the analysis at 13 TeV
- results presented at conferences: DM@LHC, Moriond
- results published CMS-PAS-B2G-14-004, JHEP 1506 (2015) 121

University of

- results published CMS-PAS-B2G-14-004, JHEP 1506 (2015) 121

Deborah Pinna - UZH

University of

(5) Run 2:

- EFT kept as benchmark
- Hadronic final state also considered: very challenging for high QCD bkg
- Simplified models: new parameters kinematical dependence studies within CMS/ATLAS DM forum, results published <u>DM forum report</u>

University of

- PhD work with focus on Dark Matter produced in association with top quark pair
 - analysis performed with data collected by CMS at 8 TeV semi-leptonic final state investigated, first CMS results for this channel
 - No excess of events observed in the search region
 - Lower limits on interaction scale M* as a function of DM mass

Assuming a DM particle of 100 GeV, M* is excluded at 90% CL below 118 GeV and DM+tt production cross section higher than 37 fb⁻¹

- work published
- gained experience to develop further the analysis at 13 TeV In addition:
 - hadronic channel also investigated
 - simplified models will be used

and the p

Thank you!

-

Backup slides

- Evidence at different observable length scales for Dark Matter (DM)
 - dispersion velocity of galaxies in galactic cluster too large to be explained by luminous matter
 - rotation curves on singular galaxies constant beyond fuminous region

velocity is expected to go like r^{-1/2}

differences explained by existence of dark matter

 Studies at different scales provide measurements that universe is composed mainly of non-baryonic matter

Dark matter abundance ~24% of the universe, five times the amount of baryonic matter

• Evidence based on gravitational interactions, no information of what is the nature of Dark Matter

Introduction

- Most studied DM candidate: Weakly Interacting Massive Particle (WIMP)
 - neutral particle
 - mass in the range ~10 GeV TeV
 - weak interactions
- Studies at largest and smallest observable length scales
 - <u>indirect searches</u>: products of DM annihilations or decays
 - <u>direct searches</u>: scattering DM-heavy nucleons
 - <u>collider searches</u>: signature of DM production

correct relic density

may be detected in different ways

• In p-p collisions Dark Matter could be produced

very stable weakly interacting particle which escape detector

Missing Transverse Energy (MET)

Energy imbalance will be observed in the plane transverse to the colliding proton beams

initial transverse momenta of partons considered negligible, rules of conservations can be applied

$$MET = \sqrt{\left(\sum_{n} E_{x}\right)^{2} + \left(\sum_{n} E_{y}\right)^{2}}$$

- Recoil

searches for DM need also visible particles in the event to which DM particle recoil against

searches classified depending on type of visible particles used to "tag" the event

For which type of events do we look at colliders?

• If DM interacts with SM sectors different type of interactions can be assumed

DM searches performed using data collected by CMS experiment during 2012:

- Mono-jet: vector, axial-vector, scalar (gg) operators
- Mono-photon: vector, axial-vector operators
- Mono-lepton: vector, axial-vector operators

Some interactions can be enhanced if DM-SM couplings are Yukawa type? T. Lin et al., 1303.6638

- DM interactions with top quarks would be favored and discovery potential increased
- search never performed in CMS

DM+tt semi-leptonic 8 TeV backup

M_{T2W} as discriminating variable

Most irreducible background from tt di-leptonic

- Large MET can arise from neutrinos and missing lepton
- M_T higher than W mass because of additional missing particles

Transverse mass M_{T2} can be used to reject background event

• minimal mother particle mass compatible with assumed event topology and daughter particle mass

Missing particles

A variable where the intermediate W are considered on shell can be used

$$\begin{split} M^W_{T2} &= & \min \left\{ m_y \text{ consistent with: } \left[\begin{array}{c} \vec{p}_1^T + \vec{p}_2^T = \vec{E}_T^{\text{miss}} \,, \, p_1^2 = 0 \,, \, (p_1 + p_\ell)^2 = p_2^2 = M_W^2 \,, \\ & (p_1 + p_\ell + p_{b_1})^2 = (p_2 + p_{b_2})^2 = m_y^2 \end{array} \right] \right\} \end{split}$$

it adds other kinematical info w.r.t to other M_{T2} variables

Bai, Cheng, Gallichio, Gu JHEP 07 (2012) 110

University of

University of DM + tt ($\rightarrow blv, bjj$): background Zurich

Dominant background (tt+jets, W+jets)

Scale Factors (SFs) extracted in CRs enriched in background composition and negligible signal contribution fitting simultaneously two simulated template distributions to data

MET in W+jets enriched CR (pre-selection + M_T >160 GeV)

M_T in tt+jets enriched CR (pre-selection but 0 b-tag + M_T>160 GeV)

 1.11 ± 0.02 (stat) SF(tt+jets) 1.26 ± 0.06 (stat) SF(W+jets)

predicted background yields and uncertainties propagated from CR to SR

Agreement between data and MC samples is used to check the validity of this estimate

CR1 (tt enriched)

• In all distributions good agreement between data and background prediction is observed after SFs applied

Agreement between data and MC samples is used to check the validity of this estimate

PRE-SELECTION

 In all distributions good agreement between data and background prediction is observed after SFs applied

• Uncertainties on backgrounds

normalization uncertainties covered by SFs shape uncertainties constrained in CRs and SFs propagated in SR

• **Uncertainties on signal**: 5-6%

Source of systematic uncertainties	Relative error on	
	total background (%)	
50% normalization error of other bkg in deriving SFs	10	
SF _{W+jets} (CR tests)	13	
$t\bar{t}$ +jets top p_T reweighting	3.9	
Jet energy scale	4.0	
Jet energy resolution	3.0	
b-tagging correction factor (heavy flavor)	1.0	
b-tagging correction factor (light flavor)	1.8	
Pileup model	2.0	

Limits are calculated using the CL_S technique with ROOSTATS software package.
 Frequentist treatment of nuisance parameters

Results: lower limits on M*

M_{χ} (GeV)	Yield (\pm stat \pm syst)	Signal efficiency (%) (\pm stat \pm syst)	σ_{\exp}^{\lim} (fb)	$\sigma_{\rm obs}^{\rm lim}$ (fb)
1	$38.3 \pm 0.7 \pm 2.1$	$1.01 \pm 0.02 \pm 0.05$	47+21 -13	55
10	$37.8 \pm 0.7 \pm 2.1$	$1.01 \pm 0.02 \pm 0.05$	46+21	54
50	$35.1 \pm 0.6 \pm 1.9$	$1.20 \pm 0.02 \pm 0.06$	39^{+18}_{-11}	45
100	$30.1 \pm 0.4 \pm 1.7$	$1.46 \pm 0.02 \pm 0.07$	32^{+14}_{-9}	37
200	$18.0 \pm 0.2 \pm 1.0$	$1.73 \pm 0.02 \pm 0.08$	27+12	32
600	$1.26 \pm 0.02 \pm 0.07$	$2.40 \pm 0.03 \pm 0.11$	19+9	23
1000	$0.062 \pm 0.001 \pm 0.003$	$2.76 \pm 0.04 \pm 0.13$	17+8	20

- Values below the observed limit are excluded
- The grey area represent only minimal requirement on M* for the EFT to be valid.
 There could be other areas on the plane where the EFT breaks down

EFT DM + tt ($\rightarrow blv, bjj$) at 8 TeV

- 90% CL lower limits on interaction scale M* for scalar interaction

Assuming 100 GeV mass DM particle, M^{*} below 118 GeV is excluded

- 90% CL upper limits on tt+DM production cross section

Cross sections higher than 55 fb for 1 GeV and higher than 20 fb for 1 TeV DM mass are excluded

26th August 2015

Deborah Pinna - UZH

University of Zurich^{UZH}

Results: limits

$$\sigma_0^{D1} = 1.60 \times 10^{-37} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{GeV}}\right)^2 \left(\frac{20 \text{GeV}}{M_*}\right)^6 \,\text{I}$$

 μ_X reduced mass DM-nucleon system

University of Zurich^{U2H}

Excluded dark matter-nucleon cross sections higher than $1 - 2 \times 10^{-42} \text{ cm}^2$ for DM masses from 1 to 6 GeV

• Trigger: single-lepton triggers: single-electron, single-muon with $p_T > 24$ and 27 GeV

	Electrons	Muons	Jets	
Reconstruction	ECAL driven algorithm	Tracker and global muon algorithms	anti-k⊤ clustering algorithm with a cone size of ΔR = 0.5	
	standard muon identification criteria	standard muon identification criteria		
Selection	Loose p⊤≥30 GeV, η <2.5	Tight p⊤≥30 GeV, η <2.1	p⊤≥30 GeV η <4.0	
	<i>I_{rel}<</i> 0.1 in ∆R=0.3	<i>I_{rel}<</i> 0.12 in ∆R=0.4	b-tagging with medium working point CSV algorithm η <2.4	

Physics objects

MUON IDENTIFICATION CUTS

Variables	cuts
isGlobalMuon	true
isPFMuon	true
χ^2 /d.o.f.	< 10
Number of muon hits	> 0
Number of pixel hits	> 0
Number of matched stations	>1
Number of tracker layers	>5
$d_{xy}(vtx)$	< 0.2 cm
$d_z(\mathrm{vtx})$	< 0.5 cm
pfIso04/ p_T , $\Delta\beta$ corr.	< 0.12
Number of matched stations Number of tracker layers $d_{xy}(vtx)$ $d_z(vtx)$ pfIso04/ p_T , $\Delta\beta$ corr.	> 1 > 5 < 0.2 cm < 0.5 cm < 0.12

ELECTRON IDENTIFICATION CUTS

Variables	tight cuts	
$ d_0(vtx) $	< 0.02 cm	
$ d_z(\text{vtx}) $	< 0.1 cm	
$\sigma_{i\eta i\eta}$	< 0.01(barrel), < 0.03(endcap)	
$ \Delta\eta_{\rm in} $	< 0.004(barrel), < 0.005(endcap)	
$ \Delta \phi_{ m in} $	< 0.03(barrel), < 0.02(endcap)	
H/E	< 0.12(barrel, < 0.10(endcap)	
1/E - 1/p	< 0.05	
$pfIso03/p_T$	< 0.1	
Matched conversion?	false	
Missing hits	0	

JET IDENTIFICATION CUTS

PF Jet ID	Cuts
Neutral hadron fraction	< 0.99
Neutral EM fraction	< 0.99
Number of constituent	> 1
Below for $ \eta < 2.4$ only	
Charged hadron fraction	> 0
Charged multiplicity	> 0
Charged EM fraction	< 0.99

Pileup reweighting

Pileup distribution different in MC w.r.t data

- MC number pileup reweighted to match data
- Data distribution re-calculated with ±5% variation on cross section to cover pileup mismodeling syst. unc.

Good agreement data-MC after pileup reweighting

 p_T distribution of leptons and jets from tops softer in data w.r.t Madgraph simulation

- Top differential cross section measurement provide SFs for correction
- Each event weighted by geometric mean of SFs from 2 tops (assumed flat > 400 GeV)
- Syst. unc.: no SF, SF applied twice

<u>b jets</u>

b-tagging algorithm: Combined Secondary Vertex (CSV)

- Standard CMS b-tagging algorithm
- Used to identify jets likely to come from b quarks fragmentation-adronization
- Exploits long lifetime of b hadrons
 large impact parameter and presence of a secondary vertex as input
- Continuous output: allows selection of optimal working points

Efficiencies, mis-tag ratesfor CSV > 0.90b quark tag: 50%for CSV > 0.50b quark tag: 72%c quark tag: 6%c quark tag: 23%light quark tag: 0.15 %light quark tag: 3 %

Effective Field Theory backup

• Supposing a heavy mediator of mass M in the s-channel coupling to DM and SM with couplings $g_1 g_2$.

Considering only the lowest order operators in the EFT approach is connected to the propagator expansion

$$\frac{g_1 g_2}{Q_{tr}^2 - M^2} = -\frac{g_1 g_2}{M^2} \left(1 + \frac{Q^2}{M^2} + \mathcal{O}\left(\frac{Q_{tr}^4}{M^4}\right) \right) \simeq -\frac{g_1 g_2}{M^2} \text{ for } Q_{tr}^2 << M^2$$

the coefficient of the effective operator should match to reproduce the UV theory, i.e. for D1

$$M_* = \left(\frac{m_q M^2}{g_1 g_2}\right)^{1/3}$$

Effective Field Theory

- In general the EFT field theory is valid when $Q_{tr} << M_*$
- The validity of the truncation of the propagator expansion requires

$$Q_{tr} < M$$

from the assumed UV details (heavy mediator, s-channel)

from kinematics

assuming most strongly coupled scenario in the perturbative regime

$$M_* = \left(\frac{m_q M^2}{g_1 g_2}\right)^{1/3}$$

$$\sqrt{g_1 g_2} < 4\pi$$

$$Q_{tr} > 2m_{\chi}$$

$$\sqrt{\frac{M_*^3}{m_q}} > \frac{M_{\chi}}{2\pi}$$

DM+tt semi-leptonic 13 TeV backup

Analysis strategy: similar to 8 TeV analysis

(1) Selection of topology

1 lepton, at least 3 jets, at least 1 b-tagged

- Rejection of background
 based on topology differences between
 bkg and signal
- (3) Extract normalization for background <u>tt+jets, W+jets</u>: from data <u>Drell-Yan, single top, Di-boson</u>: simulation

What it is new:

- shape of measured MET distribution used as additional information to improve discovery potential, shape analysis
- in addition to bkg normalization also bkg shape distribution constrained from data

University of

Background estimation procedure

background contributions N_i^{SR} in SR estimated from data in dedicated CR with a scale factor ρ_i determined from data as a function of MET

$$N_i^{\mathrm{SR,est}} = N_i^{\mathrm{CR,data}} \times \rho_i$$

University of

Zurich^{∪z+}

$$\rho_i = \frac{N_i^{\text{SR, sim}}}{N_i^{\text{CR, sim}}} \,.$$

main backgrounds for DM+tt semi-leptonic channel

tt+jets:

very similar topology to signal events, high MET for di-leptons events with one missed lepton

W+jets:

missing diagrams in simulation given a bad descriptions events at high MET/M_T values

Background estimation procedure

background contributions N_i^{SR} in SR estimated from data in dedicated CR with a scale factor ρ_i determined from data as a function of MET

$$N_i^{\mathrm{SR,est}} = N_i^{\mathrm{CR,data}} \times \rho_i$$

University of Zurich[™]

$$\rho_i = \frac{N_i^{\text{SR, sim}}}{N_i^{\text{CR, sim}}} \,.$$

main backgrounds for DM+tt semi-leptonic channel

tt+jets:

very similar topology to signal events, high MET for di-leptons events with one missed lepton

W+jets:

missing diagrams in simulation given a bad descriptions events at high MET/M_T values

(4) Final yields

(5) Results

- 90% CL lower limits on M* for scalar interaction

Assuming 100 GeV mass DM particle, excluded M* below 140 GeV is excluded for cut and count 170 GeV for shape analysis

- improvements from shape analysis of ~18% w.r.t cut and count analysis
- improvements w.r.t 8 TeV analysis already after few months of data taking!

Deborah Pinna - UZH

(4) Final yields

(5) Results

- 90% CL lower limits on M* for scalar interaction
 - Assuming 100 GeV mass DM particle, excluded M^{*} below 140 GeV is excluded for cut and count 170 GeV for shape analysis
- improvements from shape analysis of ~18% w.r.t cut and count analysis
- improvements w.r.t 8 TeV analysis already after few months of data taking!

Deborah Pinna - UZH

(3) Extract normalization for background

tt+jets, W+jets: from data

Drell-Yan, single top, Di-boson: simulation

University of Zurich^{uzH}

University of Zurich^{uzH}

University of Zurich^{UZH}

(1)

(2)

(3)

3

University of Zurich^{UZH}

10⁻³

100

150

250

200

300

400

350

M_{T2}^W (GeV)

University of Zurich^{uzH}

QCD

ZToNuNu SingleTop

Jets

= 100 GeV = 1000 GeV

Analysis strategy: similar to 8 TeV analysis

(1) Selection of topology

1 lepton, at least 3 jets, at least 1 b-tagged

(2) Rejection of background

Variable	Cut
MET	> 320 GeV
$M_T = \sqrt{2p_T^{lep} E_T^{miss} (1 - \cos(\Delta \phi))}$	> 160 GeV
min($\Delta \Phi_{j1,MET}, \Delta \Phi_{j2,MET}$)	> 1.2
M _{t2W}	> 200 GeV

tt+jets, W+jets: from data

Drell-Yan, single top, Di-boson: simulation

Cut and count analysis: full selection Shape analysis: full selection except MET selection

University of Zurich^{UZH}

Source	Yield cut and count	Yield shape
Data	-	-
Signal	11.3	161.0
Total Bkg	23.9	186.3
tt	15.8	136.2
W+jets	4.8	24
Single top	3.3	25.4
Drell-Yan	0.1	0.7
Z(vv)+jets	0.0	0.1
QCD	0.0	0.0

Work in progress on yields systematics

- 90% CL lower limits on M* for scalar interaction
 - Assuming 100 GeV mass DM particle, excluded M* below 140 GeV is excluded for cut and count 170 GeV for shape analysis
- improvements w.r.t 8 TeV analysis already after few months of data taking!

Source	Yield cut and count	Yield shape
Data	-	-
Signal	11.3	161.0
Total Bkg	23.9	186.3
tt	15.8	136.2
W+jets	4.8	24
Single top	3.3	25.4
Drell-Yan	0.1	0.7
Z(vv)+jets	0.0	0.1
QCD	0.0	0.0

Work in progress on yields systematics

- 90% CL lower limits on M* for scalar interaction
 - Assuming 100 GeV mass DM particle, excluded M* below 140 GeV is excluded for cut and count 170 GeV for shape analysis
- improvements w.r.t 8 TeV analysis already after few months of data taking!

Source	Yield cut and count	Yield shape
Data	-	-
Signal	11.3	161.0
Total Bkg	23.9	186.3
tt	15.8	136.2
W+jets	4.8	24
Single top	3.3	25.4
Drell-Yan	0.1	0.7
Z(vv)+jets	0.0	0.1
QCD	0.0	0.0

Work in progress on yields systematics

- 90% CL lower limits on M* for scalar interaction
 - Assuming 100 GeV mass DM particle, excluded M* below
 140 GeV is excluded for cut and count
 170 GeV for shape analysis
- improvements w.r.t 8 TeV analysis already after few months of data taking!

DM+tt hadronic 13 TeV backup

Analysis strategy:

(1) Selection of topology

lepton veto, at least 4 jets, at least 2 b-tagged

- (2) Rejection of background based on topology differences between bkg and signal
- (3) Extract normalization for background <u>tt+jets, QCD</u>: from data <u>Drell-Yan, single top, Di-boson, W+jets</u>: simulation

What it is new:

- higher BR but very high bkg contributions at high MET values
- shape of measured MET distribution used as additional information to improve discovery potential, shape analysis
- in addition to bkg normalization also bkg shape distribution constrained from data

University of

Background estimation procedure same as for semi-leptonic channel

for QCD the SF applied is constant as a function of MET

61

University of Zurich^{uzH}

(4) Final yields

(5) Results

- 90% CL lower limits on M* for scalar interaction

Assuming 100 GeV mass DM particle, excluded M^{*} below 140 GeV is excluded for cut and count 170 GeV for shape analysis

- improvements from shape analysis of ~18% w.r.t cut and count analysis
- improvements w.r.t 8 TeV analysis already after few months of data taking!

Deborah Pinna - UZH

University of Zurich^{uzH}

(4) Final yields

(5) Results

- 90% CL lower limits on M* for scalar interaction

- Assuming 100 GeV mass DM particle, excluded M* below 140 GeV is excluded for cut and count 160 GeV for shape analysis
- good sensitivity from hadronic channel, comparable with semi-leptonic one
- improvements w.r.t 8 TeV analysis already after few months of data taking!

University of

Zurich

Analysis strategy:

(1) Selection of topology

lepton veto, at least 4 jets, at least 2 b-tagged

(2) Rejection of background

(3) Extract normalization for background

tt+jets, W+jets: from data

<u>Drell-Yan, single top, Di-boson, W+jets</u>: simulation

University of Zurich[™]

Analysis strategy

(1) Selection of topology

lepton veto, at least 4 jets, at least 2 b-tagged

- (2) Rejection of background
 - signal has large MET from DM particles which escape detector

MET > 320 GeV

(3) Extract normalization for background

<u>tt+jets, W+jets</u>: from data

<u>Drell-Yan, single top, Di-boson, W+jets</u>: simulation

Analysis strategy

(1) Selection of topology

lepton veto, at least 4 jets, at least 2 b-tagged

(2) Rejection of background

 The jets and the MET tends to be more separated in Φ in signal events than in tt and in single top events

min(ΔΦ_{j1,MET}, ΔΦ_{j2,MET}) > 1.2 GeV

(3) Extract normalization for background

tt+jets, W+jets: from data

<u>Drell-Yan, single top, Di-boson, W+jets</u>: simulation

University of Zurich^{UZH}

26th August 2015

Analysis strategy

(1) Selection of topology

lepton veto, at least 4 jets, at least 2 b-tagged

(2) Rejection of background

Variable	Cut
MET	> 320 GeV
min($\Delta \Phi_{j1,MET}, \Delta \Phi_{j2,MET}$)	> 1.2

Cut and count analysis: full selection Shape analysis: full selection except MET selection

(3) Extract normalization for background

tt+jets, QCD: from data

<u>Drell-Yan, single top, Di-boson, W+jets</u>: simulation

Source	Yield cut and count	Yield shape
Data	-	-
Signal	391.7	688.1
Total Bkg	814.1	14249.9
tt	553.7	10505.2
Single top	100.3	1206.3
Z(vv)+jets	68.87	470.2
W+jets	68.3	587.8
QCD	23.1	1459.8
Drell-Yan	0.0	20.7

Work in progress on yields systematics

- (5) Results
 - 90% CL lower limits on M* for scalar interaction
 - Assuming 100 GeV mass DM particle, excluded M* below 140 GeV is excluded for cut and count 170 GeV for shape analysis
 - Promising results also from hadronic channel, not studied in 8 TeV analysis

Source	Yield cut and count	Yield shape
Data	-	-
Signal	391.7	688.1
Total Bkg	814.1	14249.9
tt	553.7	10505.2
Single top	100.3	1206.3
Z(vv)+jets	68.87	470.2
W+jets	68.3	587.8
QCD	23.1	1459.8
Drell-Yan	0.0	20.7

Work in progress on yields systematics

- 90% CL lower limits on M* for scalar interaction
 - Assuming 100 GeV mass DM particle, excluded M* below
 140 GeV is excluded for cut and count
 170 GeV for shape analysis
- Promising results also from hadronic channel, not studied in 8 TeV analysis

Source	Yield cut and count	Yield shape
Data	-	-
Signal	391.7	688.1
Total Bkg	814.1	14249.9
tt	553.7	10505.2
Single top	100.3	1206.3
Z(vv)+jets	68.87	470.2
W+jets	68.3	587.8
QCD	23.1	1459.8
Drell-Yan	0.0	20.7

Work in progress on yields systematics

- 90% CL lower limits on M* for scalar interaction
 - Assuming 100 GeV mass DM particle, excluded M* below
 140 GeV is excluded for cut and count
 170 GeV for shape analysis
- Promising results also from hadronic channel, not studied in 8 TeV analysis

Source	Yield cut and count	Yield shape
Data	-	-
Signal	391.7	688.1
Total Bkg	814.1	14249.9
tt	553.7	10505.2
Single top	100.3	1206.3
Z(vv)+jets	68.87	470.2
W+jets	68.3	587.8
QCD	23.1	1459.8
Drell-Yan	0.0	20.7

Work in progress on yields systematics

- 90% CL lower limits on M* for scalar interaction
 - Assuming 100 GeV mass DM particle, excluded M* below
 140 GeV is excluded for cut and count
 170 GeV for shape analysis
- Promising results also from hadronic channel, not studied in 8 TeV analysis

Simplified models backup

Assumptions:

(1) mediator is scalar or pseudo-scalar

allowing s-channel production which requires only minimal extension of SM. Scalar will give LHC signatures in different channels

- (2) DM is a Dirac particle
- (3) SM couplings are Yukawa type
- (4) DM couplings are not Yukawa type

Assumptions:

- (1) mediator is scalar or pseudo-scalar
- (2) DM is a Dirac particle

fermionic DM is arbitrary choice, results can be translated to scalar DM case but requires additional parameters

- (3) SM couplings are Yukawa type
- (4) DM couplings are not Yukawa type

Assumptions:

- (1) mediator is scalar or pseudo-scalar
- (2) DM is a Dirac particle
- (3) SM couplings are Yukawa type

fermion couplings proportional to the SM Yukawa couplings, using the Minimal Flavor Violating assumption, avoiding introducing precision constraints from flavor measurements

(4) DM couplings are not Yukawa type

Assumptions:

- (1) mediator is scalar or pseudo-scalar
- (2) DM is a Dirac particle
- (3) SM couplings are Yukawa type
- (4) DM couplings are not Yukawa type

Assumptions:

- (1) mediator is scalar or pseudo-scalar
- (2) DM is a Dirac particle
- (3) SM couplings are Yukawa type
- (4) DM couplings are not Yukawa type

Parameters:

- (1) Mediator mass M₀
- (2) Mediator width Γ_{ϕ}
- (3) DM mass, M_X
- (4) Couplings: coupling mediator-SM (g_{SM}), coupling mediator-Dark Matter (g_{DM})

- Need to check kinematic distributions
- Only few combinations could be produced and rescaled to other possible cases

Assumptions:

- (1) mediator is scalar or pseudo-scalar
- (2) DM is a Dirac particle
- (3) SM couplings are Yukawa type
- (4) DM couplings are not Yukawa type

Parameters:

- (1) Mediator mass M_{ϕ}
- (2) Mediator width Γ_{ϕ}
- (3) DM mass, M_X
- (4) Couplings: coupling mediator-SM (g_{SM}), coupling mediator-Dark Matter (g_{DM})

- Need to check kinematic distributions
- Only few combinations could be produced and rescaled to other possible cases

Assumptions:

- (1) mediator is scalar or pseudo-scalar
- (2) DM is a Dirac particle
- (3) SM couplings are Yukawa type
- (4) DM couplings are not Yukawa type

Parameters:

- (1) Mediator mass M₀
- (2) Mediator width Γ_{ϕ}
- (3) DM mass, M_{χ}
- (4) Couplings: coupling mediator-SM (g_{SM}), coupling mediator-Dark Matter (g_{DM})

- Need to check kinematic distributions
- Only few combinations could be produced and rescaled to other possible cases

Assumptions:

- (1) mediator is scalar or pseudo-scalar
- (2) DM is a Dirac particle
- (3) SM couplings are Yukawa type
- (4) DM couplings are not Yukawa type

Parameters:

- (1) Mediator mass M₀
- (2) Mediator width Γ_{ϕ}
- (3) DM mass, M_X
- (4) Couplings: coupling mediator-SM (g_{SM}), coupling mediator-Dark Matter (g_{DM})

- Need to check kinematic distributions
- Only few combinations could be produced and rescaled to other possible cases

Assumptions:

- (1) mediator is scalar or pseudo-scalar
- (2) DM is a Dirac particle
- (3) SM couplings are Yukawa type
- (4) DM couplings are not Yukawa type

Parameters:

- (1) Mediator mass M₀
- (2) Mediator width Γ_{ϕ}
- (3) DM mass, M_X
- (4) Couplings: coupling mediator-SM (g_{SM}), coupling mediator-Dark Matter (g_{DM})

- Need to check kinematic distributions
- Only few combinations could be produced and rescaled to other possible cases

Work done inside the CMS/ATLAS DM forum, results published DM forum report

(1) Mediator mass M_{ϕ}

kinematics depends on this parameter

(2) Mediator width Γ_{ϕ}

Kinematics changes seen only close to threshold

(3) DM mass, M_{χ}

On-shell (2Mchi < Mphi): kinematics independent of Mchi

Off-shell (2Mchi > Mphi): kinematics depends on Mchi

(4) Couplings: coupling mediator-SM (g_{SM}), coupling mediator-Dark Matter (g_{DM})

small couplings will have very small cross-section already cross section \sim fb for $g_{SM} = g_{DM} = 1$

