

All hadronic ttH(bb) analysis using the Matrix Element Method

Daniel Salerno

2015 PhD seminar

26 August 2015, PSI

Standard model ttH production

Motivation

- Higgs boson with 125 GeV mass discovered by CMS and ATLAS
 - Focus now on studying its properties
- ttH provides a direct probe of the Higgs/top Yukawa coupling y_t
 - Most important fermion coupling
 - Only one with $y_f \sim 1$
 - $-y_f = m_f / v$, where $v \approx 246$ GeV
 - Provides insight into possible new physics
- This search is at CMS
 - Multipurpose detector at the LHC

Production cross section at LHC

ttH has the lowest cross section of all Higgs production mechanisms

~ 0.1, 0.5, 0.6 pb @ 8, 13, 14 TeV respectively

All hadronic ttH(bb) channel

Feynman diagram

Characteristics

- ↔ H→bb has largest branching ratio of Higgs decays (~58%)
- All hadronic represents ~46% of all ttH(bb) decays
- Fully reconstructed final state
 - 8 jets: 4 b-jets and 4 light-jets
- 🙁 Large QCD Multijet background
 - Cross section ~10⁶ times ttH(bb)
- Large combinatoric selfbackground

Experimental search

LHC and the CMS detector

8 TeV leptonic analysis

- Completed analysis in single lepton and di-lepton channels
- Used 19.5 fb⁻¹ of 8 TeV data
- Background dominated by tt+jets
 - Matrix element showed good discrimination power

$$\mu = \frac{\sigma_{\rm ttH}}{\sigma_{\rm SM}} < 4.2 \ (3.3)$$

observed (expected)

Best-fit value:

$$\hat{\mu} = 1.2^{+1.6}_{-1.5}$$

Eur. Phys. J. C, Vol. C75, No. 6, 2015, p. 251

Analysis overview

Organisation

- Part of the ttH-MEM group*
 - Semi leptonic + dilepton ttH(bb)
 - All hadronic ttH(bb)
 - Boosted topologies ttH(bb)
 - Leptonic ttH(ττ)

Data and Monte Carlo

- Currently collecting data from the LHC at 13 TeV
- Monte Carlo samples used to simulate signal and background
 - aMC@NLO and MadGraph interfaced with PYTHIA 8

* The ttH-MEM group is a collaboration between UZH, ETH, NICPB (Tallinn) and LLR (Ecole Polytechnique)

Analysis strategy

1 Trigger

- Large p-p collision rate
- Cannot save all events
- Need to select interesting events
- 2 Selection
 - Large amount of background
 - Need to reduce it by cutting on measured/calculated variables
- 3 Matrix Element Method
 - Employed after the selection
 - Provides final discriminant to further separate signal from background

High level trigger

New paths in HLT menu

- Developed dedicated HLT paths
 - Now integrated in CMS menu
- Control paths also integrated
 - Help measure the efficiency
- Successfully taking data in new runs at 13 TeV

Efficiency estimates

Selection	# in 20	Efficiency	
Celection	fb⁻¹	Incr.	Total
Total ttH(bb) events	5 868		100%
All hadronic events	2 674	46%	46%
≥7 jets with p _T >25 GeV and η <2.5, ≥6 jets with p _T >35 GeV, ≥3 b-tags	798	30%	14%
Trigger 1 OR Trigger 2	689	86%	12%

Path	H _⊤ * cut [GeV]	Jet cut [GeV]	b-tag cut
Signal paths			
Trigger 1	>450	≥6 j: p _T >40, η <2.6	≥1 b
Trigger 2	>400	≥6 j: p _T >30, η <2.6	≥2 b
Prescaled cor	ntrol paths	5	
Control 1	>450	≥6 j: p _T >40, η <2.6	_
Control 2	>400	≥6 j: p _T >30, η <2.6	-

* H_T = sum of transverse momentum

Rate estimates (L = 1.4e34)

(Hz)	Total	Unique
Total p-p collision rate	40 000 000	
Max total Level 1 Trigger rate	100 000	
Maximum total HLT rate	1200	
Trigger 1 OR Trigger	17.5±1.4	8.6±0.8

Need to keep rate < 20 Hz, unique rate < 10 Hz

Trigger turn on curve

First 13 TeV data

Event selection

Preselection

- 6 jets with $p_T > 40$ GeV, $|\eta| < 2.4$
- 2 b-tagged jets (CSV 0.814)
- H_T > 500 GeV (selected jets only)
- Lepton veto (none with p_T > 20 GeV)

Selection possibilities

- Simple cut-and-count
 - e.g. 8 jets p_T > 30 GeV, 4 b-tags
- B-tag likelihood ratio cut
- Kinematic fit
- Quark-gluon separation
 - See next slide
- Combination of the above

B-tag likelihood ratio

- Combined Secondary Vertex (CSV) values (ζ) of each jet calculated
 - Impact parameter significance

- High CSV values are more likely to be from b-jets
- CSV values used in a likelihood function for competing hypothesis
 - e.g. 4b,4q vs. 2b,6q

$$b_{\rm LR} = \frac{\mathcal{L}_{4b4q}(\zeta_1, ..., \zeta_n)}{\mathcal{L}_{4b4b}(\zeta_1, ..., \zeta_n) + \mathcal{L}_{2b6q}(\zeta_1, ..., \zeta_n)}$$

Quark-gluon separation

Quark-gluon likelihood

- Discriminates jets from quarks and jets from gluons
 - QCD Multijet is likely to have more jets from gluons
- Calculated for each jet based on particle-flow composition
 - Energy of constituents
 - Number of constituents
 - Direction of constituents
- Optimized to discriminate light quarks (u,d,s) from gluons
- QGL values used in a likelihood function for competing hypotheses
 - ▶ e.g. 8q,0g vs. 4q,4g

Work ongoing to develop a likelihood ratio incorporating the QGL discriminant and b-tag CSV value

Event categories

Preselection distributions

Preselection distributions

Closest bb pair – mass

The Matrix Element Method

- Provides optimal separation of signal and background
- Overview Reduces combinatorial self-background (sums over all combinations)
 - Calculates the probability of an event being signal/background

The ME discriminant

Calculation

- For each event \mathcal{P}_{S} and \mathcal{P}_{B} are calculated
- Final discriminant is built

•
$$P_{s/b} = \frac{\mathcal{P}_S}{\mathcal{P}_S + \mathcal{P}_B}$$

- Lies between 0 and 1 by definition

May eventually add QCD probability, \mathcal{P}_{B2}

$$\blacktriangleright P_{s/b} = \frac{\mathcal{P}_S}{\mathcal{P}_S + \mathcal{P}_B + \mathcal{P}_{B2}}$$

Illustrative P_{s/b} distribution

Expected performance

- The matrix element discriminant provides ~15% improvement on a simple yield analysis after selection
- Estimate of expected performance based on yields after simple cut-and-count selection in 5 event categories
 - Worst case scenario, as b-tag and QGL likelihood ratios as well as kinematic fit are expected to boost performance
 - However, systematic uncertainties are not considered in this estimate

	10 fb ⁻¹	20 fb ⁻¹	300 fb ⁻¹
S / √B	0.36	0.51	2.0
95% CL limit on σ_{ttH} / σ_{SM}	4.9	3.4	_
~15-20% control to the total sensition	ntribution I ttH(bb) ivity	Semi leptonic Di leptonic All hadronic	

Summary and next steps

	Optimise selection strategy
Next	 Implement W mass requirements, b-tag likelihood ratio, quark- gluon likelihood and kinematic fit
steps	Incorporate boosted topologies
	Optimise the matrix element discriminant

Backup

MC Samples – Spring15

Spring15 production, PU2015_25ns, MINIAODSIM

- ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8
- ttHTobb_M125_13TeV_powheg_pythia8
- TTJets_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8
- TTJets_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
- QCD_HT300to500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
- QCD_HT500to700_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
- QCD_HT700to1000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
- QCD_HT1000to1500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
- QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8
- QCD_HT2000toInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8

- 4.2M events
- 3.9M events
- 43M events
- 11M events
- 20M events
- 19M events
- 15M events
- 4.5M events
- 4.0M events
- 2.0M events

Low HT QCD samples have insufficient statistics (given the large cross section) May need to derive a data driven estimate similar to that done with 8 TeV data

The Matrix Element Method

Method	 Measured kinematical variables (y) used a Integration over poorly measured variables (<i>H</i> Sum over all possible permutations of jet- w_i(y) = 1/σ_i Σ_{perm} ∫_Ω dx ∫ dx_adx_bΦ(x_a, x_b)δ⁴{(x_aP_a + Ω = phase space volume of final particles x, x Φ = parton flux factor, M_i = scattering amplitu W = transfer function: probability of measuring 	as input E_{jet}, p_v) -quark matching $x_b P_b) - \sum p(\mathbf{x}) \mathcal{M}_i(\mathbf{x}) ^2 W(\mathbf{y} \mathbf{x})$ $\mathbf{x}_{a,b}$ = parton momentum fraction ude of process <i>i</i> (<i>i</i> = ttH, tt+bb) ig y given x
Final discriminants	Two discriminants defined: Matrix element $P_{sb} = \frac{w_S}{w_S + k_{sb}w_B}$ B-tag likelihood $P_{bj} = \frac{\mathcal{L}_{bbbb}}{\mathcal{L}_{bbbb} + k_{bj}\mathcal{L}_{bbjj}}$ where $\mathcal{L}_{bbjj} = \sum_i P(\zeta_1,, \zeta_6 \{bbjjjj\}_i)$ and	In 8 TeV leptonic analysis a 2D analysis was performed: 6 bins in $P_{sb} \times 2$ bins in P_{bj} d $\zeta_1,,\zeta_6$ are the jet CSV values

Matrix Element details

Inputs

	Light jet:	θ,	φ,	E	\rightarrow	q
t- "l=	Light jet:	θ,	φ,	E	\rightarrow	q'
ι	b-tag jet:	θ,	φ,	Е	\rightarrow	b
[w-[■	Light jet:	θ,	φ,	Е	\rightarrow	q
t- ïL∎	Light jet:	θ,	φ,	Ε	\rightarrow	q'
l 🖷	b-tag jet:	θ,	φ,	Е	\rightarrow	b
	b-tag jet:	θ,	φ,	Е	\rightarrow	b ₁
"l∎	b-tag jet:	θ,	φ,	Е	\rightarrow	b ₂
Precisely measured Integrated over resolution (±4σ) Calculated from other variables						

Integrated over full range (?)

Kinematic reconstruction – top

$$E_{q'} = \frac{m_{W}^2}{4E_q \sin^2(\frac{\theta_{qq'}}{2})}$$
$$E_b = \frac{a\Delta_{m_t} \pm |b| \sqrt{\Delta_{m_t}^2 - (a^2 - b^2)m_b^2}}{a^2 - b^2}$$

where
$$\begin{aligned} a &\equiv E_{\rm q} + E_{\rm q'} \\ b &\equiv E_{\rm q}(\vec{e}_{\rm q} \cdot \vec{e}_{\rm b}) + E_{\rm q'}(\vec{e}_{\rm q'} \cdot \vec{e}_{\rm b}) \\ \Delta_{m_{\rm t}} &\equiv \frac{1}{2}(m_{\rm t}^2 - m_{\rm b}^2 - m_{\rm W}^2) \end{aligned}$$

Kinematic reconstruction – Higgs

$$E_{\rm b_2} = \frac{a\Delta_{m_{\rm H}} \pm |b| \sqrt{\Delta_{m_{\rm H}}^2 - (a^2 - b^2)m_{\rm b}^2}}{a^2 - b^2}$$

where $a \equiv E_{\rm b}$

$$\begin{aligned} u &\equiv E_{\rm b_1} \\ b &\equiv \sqrt{E_{\rm b_1}^2 - m_{\rm b}^2} (\vec{e}_{\rm b_1} \cdot \vec{e}_{\rm b_2}) \\ \Delta_{m_{\rm H}} &\equiv \frac{1}{2} (m_{\rm H}^2 - m_{\rm b}^2) \end{aligned}$$

Preselection distributions: jet p_T

2015 PhD seminar - Daniel Salerno

QGL for jets ordered by p_T

QGL for jets ordered by QGL

Number of non-b-jets with QGL>0.9

QGL of jets with best W mass

8 TeV performance

8 TeV performance

Integrating over one "missing" parton

P_{s/b} distribution: 8j, ≥4b

Normalised

8 TeV performance

"Optimising" discriminant scale factor

P_{s/b} distribution: 8j, ≥4b

Normalised

Predictions for Run II

Pre discriminant yields

- Extrapolated from 8 TeV yields
- So far only 8j,≥4b and ≥9j,≥4b categories provide meaningful sensitivity
 - Preselection on W mass not yet implemented
- Yields for 20 fb⁻¹ at 13 TeV

► ttH	75
tt+jets	2 100
► QCD	5 500
Total basission	7 000

Total background 7 600

Early analysis of 13 TeV MC samples suggest more favourable yields

Estimated post-fit sensitivity

- Assuming 10% post-fit error on Signal and Background
- Assuming 15% improvement from the Matrix Element Discriminant
 - (Based on 8 TeV leptonic analysis)

	5 fb ⁻¹	20 fb ⁻¹	300 fb ⁻¹
S / √B	0.37	0.74	2.9
95% CL limit on σ_{ttH} / σ_{SM}	5.4	2.7	_