

Studies of the XENON100 Electromagnetic Background

Daniel Mayani Physik-Institut

University of Zurich

PhD Seminar PSI, August 26-27, 2015

Searching for elusive particles

The main challenge for experiments searching for low event rate phenomena, such as **dark matter**, is the **reduction and discrimination** of the **background radiation**. Installing the detectors in **underground facilities** is the first step to reach an increased sensitivity to such rare events.

Searching for elusive particles

The main challenge for experiments searching for low event rate phenomena, such as **dark matter**, is the **reduction and discrimination** of the **background radiation**. Installing the detectors in **underground facilities** is the first step to reach an increased sensitivity to such rare events.

XENON at LNGS

Laboratori Nazionali del Gran Sasso:

- 1400 m of rock overburden
- 3100 m water equivalent
- 10⁶ muon flux reduction wrt the surface

XENON at LNGS

XENON

2

Laboratori Nazionali del Gran Sasso:

- 1400 m of rock overburden
- 3100 m water equivalent
- 10⁶ muon flux reduction wrt the surface

Background sources

Nuclear recoil background:

- Neutrons induced by muon interactions.
- Neutrons from alpha collisions and spontaneous fission from natural radioactivity in the detector and shield materials.

Electronic recoil background:

- Natural radioactivity in the detector and shield materials.
- ²²²Rn contamination in the shield cavity.
- Intrinsic contamination of ²²²Rn, ⁸⁵Kr in the liquid xenon.
- Cosmogenic activation of the detector components during construction and storage at the surface.

The XENON100 shield

The passive shield layers, with 360° coverage of the detector, absorb gamma and neutron radiation.

Lead: Water tanks: 15 + 5 cm. 20 cm thick, **neutron** absorption. Low ²¹⁵Pb, 33 tons, Gamma absorption. **Polyethylene:** 20 cm thick, 1.6 tons Neutron absorption. **Copper:** 5 cm thick, 2 tons, Absorption of gammas from outer shield.

The XENON100 components

PMTS:

- Hamamatsu R8520
- 98 top array
- 80 bottom array
- 64 veto

Cryostat:

- Double walled (1.5 mm thick)
- Low radioactivity stainless steel
- 70 kg total

Bell:

- Stainless steel
- 3.6 kg

PTFE structure:

- 24 interlocking panels
- 12 kg of teflon
- UV light reflector

Background Monte Carlo

All materials screened for radioactive contamination with high purity Ge detectors at LNGS. Astropart. Phys. 35:43-49, 2011 More details in talk by Francesco Piastra

Rate [events kg^{.1} day^{.1} keV^{.1}]

3000

1000

°Co

40 K

10

DRU [day ¹kg ¹keV ¹]

104

500

1500

2000

2500

Simulated spectrum in very good agreement with data taken during the commissioning of the detector in Fall 2009. Phys. Rev. D83:082001, 2011

data (Fall 2009, no veto cut)

Comparing data and simulation

- Kr in LXe: Concentration of 10 ppt.
- ²²²Rn in LXe: Activity value of 64.1 uBq/kg.
- Decay of ⁶⁰Co (5.27y half-life). The time between materials screening run12 corresponds to roughly a half-life of ⁶⁰Co.
- **Detector energy resolution** as a function of energy: $\sigma(E)/E$ [%] = 0.9 + 45/ $\sqrt{E[keV]}$
- Two neutrino double beta decay in ¹³⁶Xe with halflife of 2.165 x 10²¹ years (EXO 2014).

Event position reconstruction

Saturation of the photomultiplier tubes (PMTs) from high S2 signals causes a mis-reconstruction of the event position.

Top PMT array

Event position reconstruction

Event rate correction factor

10

Event rate correction factor

Correction factors as a function of energy for different radii.

30 kg FV

30 kg FV Corrected

Outlook

- In general, the analysis of the background spectrum is important for a proper understanding of the detector and its backgrounds.
- The main goal is to **match the Kr and Rn levels** measured in XENON100 and those implemented in the simulation.
- A mismatch between data and simulation event rates is observed and can be understood due to the event position reconstruction discrepancy caused by saturation of the PMTs.
- I have studied the saturation effects for different energies and radii, obtaining a **preliminary correction function for the MC event rates**.
- To do:
 - Understand **over-correction**, which may be attributed to using the **upper limits** of screening results.
 - Determine a more appropriate correction function.
 - Evaluate the systematic errors in the determination of the correction factors.

¹³¹Xe and ¹²⁹Xe

¹³¹Xe and ¹²⁹Xe

¹³¹Xe and ¹²⁹Xe

¹³⁷Cs - 662 keV

Events as a function of radius in the TPC

Integrated events within a certain radius of the TPC

⁶⁰Co – 1173 and 1332 keV

⁶⁰Co – 1173 and 1332 keV

Krypton

- Commercially available xenon gas has a concentration of natural krypton at the ppm (parts-per-million) level.
- The gas used in XENON100 has been processed to reduce the concentration of krypton below 10 ppb.
- In addition, a krypton distillation column is used that can lower the concentration to the ppt level.
- The isotope ⁸⁵Kr undergoes beta decay with a half-life of 10.76 years.
- Natural krypton contains 2×10⁻¹¹ of ⁸⁵Kr

Radon

Radon is present in the liquid xenon due to emanation from detector materials and diffusion of the gas through the seals.

Radon is measured through:

- Alpha decays of ²²²Rn
 ²¹⁸Po
- **BiPo** tagging.

Above: Evolution of Rn concentration in Run 12 of XENON100.

Monte Carlo of the XENON100 Background

MC background with energy resolution (10 kg, no veto)

Detector materials MC background (10 kg FV, no veto)

- ²²²Rn in LXe: Activity value of 64.1 uBq/kg.
- Kr in LXe: Concentration of 10 ppt.
- Decay of ⁶⁰Co (5.27y half-life). The time between materials screening run12 corresponds to roughly a half-life of ⁶⁰Co.
- Detector energy resolution as a function of energy: $\sigma(E)/E$ [%] = 0.9 + 45/ $\sqrt{E[keV]}$
- Two neutrino double beta decay in ¹³⁶Xe with halflife of 2.11 x 10²¹ years.

