

Small Animal Fast Insert for MRI

Towards a high-rate capable PET insert for multimodal dynamic imaging

Robert Becker, Jean-Pierre Cachemiche, Chiara Casella, Günther Dissertori, <u>Jannis Fischer</u>, Alexander Howard, Mikiko Ito, Parisa Khateri, Kevin Kramer, Werner Lustermann, Christian Morel, Josep Oliver, Ulf Röser, Qiulin Wang, Bruno Weber

Contents

- Introduction
- SAFIR
 - Design Concept
 - Readout Options
- Simulation
 - NECR
 - Spatial Resolution
 - Derenzo Phantom
- Summary and Outlook

Introduction Principle of PET

- PET = positron emission tomography
- Positron emitting tracer
 - e.g. F-18 ($T_{1/2} = 109.8 \text{ min}$), O-15 ($T_{1/2} = 122.2 \text{ s}$)
 - electron-positron annihilation
 - Detect 511 keV back-to-back gammas in coincidence
- Wanted: tracer distribution ("Image")

 y_i

H Institute for

■ Noisy Projections → Reconstruction → Image + Noise

 P_{ij}

 γ_i

SAFIR Small Animal Fast Insert for MRI

- Simultaneous acquisition with MRI PET insert for preclinical Bruker BioSpin 70/30
- Detect fast biological processes
 Temporal Resolution / Acquisition times ~ seconds (Extremly short, usually ~ minutes)
- Increase tracer activity up to 500 MBq (~10 times more than usual) to make up for short acquisition time frames
- e.g. locate increased activity in stimulated mouse cortex (2 × 2 × 2 mm³)
 Spatial Resolution < 1.5 mm FWHM

SAFIR: Reference Design Mechanical Design Concept Front-end electronics Kapton cables Scheme of full scanner **Crystal Matrices** assembly with SiPMs Co Million of Detector modules with gradient tube and HF Diameters: inner 114 mm, outer 198 mm coils Axially 200 mm of detector modules 10 kHz / mm² expected rate

SAFIR

© Hamamatsu

SAFIR Alternative Readout Concept

- Reference Design
 - Kapton cable from photosensor to front-end board (FEB) outside crystal section
 - STIC ASIC (T Harion *et al* 2014 *JINST* 9 C02003) on FEB
 - Electrical or optical output to DAQ system

- Module Design concept
 - Ceramic Module
 - Flip-chip bonding of PETA ASIC (I Sacco *et al* 2015 Presentation at PISA Meeting)
 - Integrated cooling channels
 - SiPMs on other side of ceramic substrate

Simulation

- Custom simulation framework based on Geant4
- Processing
 - Coincidence sorting (custom program)
 - Sinogram sorting (STIR)
- Reconstruction (STIR)
 - Analytic algorithms (filtered back-projection, FBP)
 - Iterative algorithms (e.g. OSMAPOSL)

- Evaluation of scanner geometry
 - NEMA standard
 - Noise-equivalent count-rate (NECR)
 - Spatial resolution (point source)
 - Phantom data

Simulation NECR

- NEMA NECR phantom with F-18
- Gaussian blurring
 - Time σ=150 ps
 - Energy σ=0.085 E
- Scatter fraction assumed 10%
- Coincidence window 402 ps
- Crystal size:
 - $2.0 \times 2.0 \times 12 \text{ mm}^3$
- Only "Golden Events"
 - Hits on photo peak (350-650 keV)
 - Multiplicity 2 in coincidence events
 - Assuming no dead-time and no pile-up

Simulation Spatial Resolution

- Point-like source of Na-22 in 1 cm³ acrylic cube at different radial distances from center
- Central axial plane
- Reconstruction (FBP3DRP)
- FWHM around maximum pixel
- Radial and Tangential Resolution ~1.5mm
 FWHM achievable at center of FOV
- Axial Resolution dependent on ring difference

Simulation Derenzo

- Crystal size: $2 \times 2 \times 12 \text{ mm}^3$
- 500M events in balls

- Voxel size = bin size / 2 = 0.55 mm
 - Distinguishable down to **1.6 mm** spheres

11

Summary and Outlook

- Simulation
 - NECR: no domination by randoms at prospective activity (500 MBq)
 - NEMA spatial resolution requirements are met
 - Iterative reconstruction resolves objects smaller than crystal side length
- Electronics Concept
 - Two alternative concepts
 - To be tested for rate capability, MR compatibility, timing resolution
- Aim to have one prototype ring end 2016
- Full system to be finished 2017

