News on the mercury magnetometer for the nEDM experiment at PSI

Obvious but unexplained baryon asymmetry in the Universe: Where has all the anti-matter gone?

Observed:

$$\frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx 10^{-10}$$

Sakharov 1967:

- B-violation
- C & CP-violation
- thermal non-equilibrium (JETP Lett. 5 (1967) 24)

SM expectation:

$$\frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx 10^{-18}$$

The discovery of a nEDM would indicate a yet unobserved source of CP violation.

CP violation and nEDM

 $H = -2\left(\vec{ds} \cdot \vec{E} + \mu \vec{s} \cdot \vec{B}\right)$

A non-zero particle EDM violates *P*, *T* and, assuming *CPT* conservation, also *CP*.

Search for the electric dipolemoment of the neutron

$$f_n = \frac{2}{h} \left(\vec{\mu}_n \cdot \vec{B} + \vec{d}_n \cdot \vec{E} \right)$$

$$\vec{B} \uparrow \downarrow \vec{E}$$

$$\vec{B} \not \downarrow \vec{E}$$

$$\vec{B} \not \downarrow \vec{E}$$

$$d_{n} = \frac{1}{2E} \left(h \left(f_{n}^{\uparrow\uparrow} - f_{n}^{\uparrow\downarrow} \right) + \mu_{n} \left(B^{\uparrow\uparrow} - B^{\uparrow\downarrow} \right) \right)$$
$$d_{n} = \frac{1}{2E} \left(h \Delta f_{n} + \mu_{n} \Delta B \right)$$
$$\int$$
Major source for systematic effects

Sensitivity requirements

 \rightarrow Current limit: C.A.Baker et al., PRL 97 (2006) 131801 $d_n < 2.9 \times 10^{-26} e \ cm$

\rightarrow Sensitivity goal for the nEDM@PSI: 200 days of measuring $d_n < 5 \times 10^{-27} e \; cm$

 \rightarrow Sensitivity goal for our magnetometer:

The uncertainty in a change of the Lamor frequency induced by an magnetic field changes has to be smaller than the frequency change caused by an nEDM

 $\sigma(\Delta B) \leq 100 fT$

 \rightarrow And a ten times higher sensitivity goal for n2EDM

Sybille Komposch

The nEDM apparatus

Sybille Komposch

PAUL SCHERRER INSTITU

26.08.2015

nH

PAUL SCHERRER INSTITUT Performance of the Hg-Comagnetometer

Sybille Komposch

26.08.2015

us

nF

UK

(pc

Hg-Comagnetometer

 \rightarrow Measure residual magnetic field drifts with **optically detected nuclear magnetic resonance (ODMR)**

Hg-Comagnetometer

Hg-Comagnetometer

Depolarization rate: dominated by wall collisions

\rightarrow Behavior of T2 still not understood completely **Room for improvements**

60 Tau / s 50 40 30L 50 100 150 200 250 300 Cycle 150 100 50 HV / KV 0 -50 -100 -150 L 0 50 100 150 200 250 300 Cycle

Depolarization Time drops dramatically with each polarity change of the HV

PAUL SCHERRER INSTITU

Sybille Komposch

26.08.2015

us

nF

UK

PB

Exchanging the light source

current light sources: ²⁰⁴Hg discharge bulbs

- \rightarrow Large uncertainty on the output frequency spectrum
- self absorption
- Temperature changes
- Light cannot be focused / collimated
- Emission lines are Doppler-broadend

Planned light source: UV laser system FHG (fourth harmonic generator):

- $IR \rightarrow Vis \rightarrow UV$
- Higher intensity
- Much lower frequency range of the light

U boc

SCHERRER INSTITUT

Conclusion

- The nEDM experiment is a very sensitive probe for the SM
- We are taking data at the moment.
- Magnetic field fluctuation are well under control.
- But for the next generation experiment n2EDM we have to improve the performance of the Hg magnetometer.
- Still much room for improvements and not yet understood behavior of the Hg.

Thank you!

tests @ nEDM with laser

 \rightarrow transport of the UV laserlight via a 50m multimode fiber from the lab to the experiment (proof of principle)

UV laser system

FHG (fourth harmonic generator): IR \rightarrow Vis \rightarrow UV

- System from Toptica: 20mW@ 254nm
- Installed in a testlab, 50m away from the nEDM experiment
- Frequency stabilization via Sub-Doppler Dichroic Atomic Vapor Laser Lock (SD-DAVLL)

Sybille Komposch

PAUL SCHERRER INSTITUT

PAUL SCHERRER INSTITUT

