Prototype Studies for the Mu3e Scintillating Fiber Detector

Giada Rutar
Paul Scherrer Institut and ETHZ
on behalf of the Mu3e Collaboration

PhD Seminar 2015
The Mu3e Experiment

Search for the charged lepton flavor violating decay

$$\mu^+ \rightarrow e^+e^-e^+$$

with an aimed single event sensitivity of $O(10^{-16})$
(staged approach: Phase I SES 10^{-15}, Phase II SES $<10^{-16}$)

Standard Model: $\text{BR} < O(10^{-50})$

$\Rightarrow \mu \rightarrow e^+e^-e^+$ is sensitive to new physics
Experimental Layout (Phase I)

Scintillating Fiber Detector

Purpose:
Complement the silicon tracker (unambiguous silicon hit assignment to tracks)

Requirements:
- timing resolution < 1 ns
- detection efficiency ~100 %
- as little material as possible (multiple scattering)

Baseline design:
~4'500 fibers of 250 μm thickness and ~ 35 cm length arranged in three-layer-ribbons, read out by Silicon Photomultipliers (SiPMs) at both fiber ends
Scintillating Fiber Detector

Challenge: Achieve good timing resolutions (< 1 ns) with high detection efficiency using so little (< 1 mm) scintillation material

- expected energy deposit (MIP) ~ 30 keV ≈ O(10) detected photons per fiber

Measurement goals with PSI prototypes:
- timing resolution in single- and multi-hit event
- detection efficiency
 for both 250 μm and 500 μm squared fibers

Tests...
- in the lab (Sr90 source)
- in PiE5 area @ PSI (28 MeV/c e⁺, older version of the 250 μm prototype)
- in PiM1 area @ PSI (115 MeV/c e⁺, newer version of the 250 μm prototype)
The Prototypes

- Telescope structure
 - 3 layers
 - 14 channels (7 fibers read out at both ends)

Arrangement of the fibers

beam/ source

single fiber used for trigger purposes
The Prototypes

• Telescope structure
 – 3 layers
 – 14 channels (7 fibers read out at both ends)
• Squared 250 μm fibers
 – Saint-Gobain BCF-12 multiclad
 – 25 cm length
 – coated with 100 nm of aluminum to suppress crosstalk between fibers
 – fibers mounted on a plexiglass frame

cross talk between adjacent fibers (Sr90 electrons)

no coating around the fibers

cross talk ~30 %

Aluminum coating around the fibers

cross talk < 1 %
The Prototypes

- Light detection: SiPM coupled at both fiber ends
 - Hamamatsu S12815-050C
 - 50 μm pixel size, sensitive area 1.3 x 1.3 mm²
 - Coupling fiber – SiPM with optical grease
Electronics

• Preamplifiers:
 – MAR-amplifiers developed at PSI (and optimized for small amount of detected photons)

• DAQ: PSI DRS evaluation boards (daisy-chained)
 – Waveform digitization @ 5 GSPS
 – 4 channels per board
 – Max. acquisition rate for one single evaluation board: 500 Acq./sec
The Lab-Setup

- **Sr90 source**
 - Collimator mounted on a moving stage
- **External trigger**:
 - Plastic scintillator (4 x 4 x 20 mm3) coupled to
 - SiPM (Hamamatsu 3 x 3 mm2 active area)
 - Select MIPs ($E_e > 1.5$ MeV)
 - Get rid of thermal noise (no cooling)
Results 250 μm – Source

- Collected light – Sum of both SiPM (readout of both fiber ends) – Threshold 0.5 NPhe

SiPMs in “OR” logic
(at least 1 SiPMs sees a signal)

Mean NPhe = 7.3
efficiency ≈ 92 %
(single fiber)

SiPMs in “AND” logic
(both SiPMs see a signal)

Mean NPhe = 8.3
efficiency ≈ 74 %
(single fiber)
Results 250 μm – Source

• Collected light – Homogeneous response of the detector – Threshold 0.5 NPhe (AND logic)

All fibers see ~ the same amount of light

Mean # of NPhe

Source e⁻

efficiency (OR) ≈ 97 %
efficiency (AND) ≈ 79 %
(fiber layer)
Results 250 μm – Source

- Timing: Custom waveform analysis with offline constant fraction discrimination – Threshold 0.5 NPhe (AND logic)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entries</td>
<td>52552</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-0.06205</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td>0.5596</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>55.61/19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p0</td>
<td>1099 ± 713.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p1</td>
<td>-0.0914 ± 0.0216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td>0.7185 ± 0.0570</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td>6594 ± 689.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td>-0.05563 ± 0.00462</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p5</td>
<td>0.5155 ± 0.0149</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single hit timing resolution

$$\sigma(T) = \sigma((t_1 - t_2)/2)$$

time measured by SiPM 1

time measured by SiPM 2

fibers under consideration

$\sigma(T) \approx 515$ ps
Results 250 μm – Source

- Timing: Custom waveform analysis with offline constant fraction discrimination – Threshold 0.5 NPhe (AND logic)

\[
\sigma(\bar{T}') = \sigma((T_{12}-T_{34})/2) = \sigma(T)/\sqrt{2}
\]

Note:
\[
\sigma(\bar{T}') = \sigma((T_{12}-T_{34})/2) = \sigma((T_{12}+T_{34})/2) = \sigma(\bar{T})
\]

fibers under consideration

\[\sigma(\bar{T}') \approx 410 \text{ ps}\]
Test Beam PiE5

- Test of a previous version of the 250 μm prototype
 - Difference w.r.t. new version: Al coating via sputtering instead of PVD ➔ slightly less performing fibers (mean collected number of photons 7.4 NPhe instead of 8.3 NPhe)

- Beam Momentum: \(p = 28 \text{ MeV/c} \) positrons
Results 250 μm – Test Beam PiE5

- Timing: Custom waveform analysis with offline constant fraction discrimination – Threshold 0.5 NPhe (AND logic)

\[\sigma(T) \approx 535 \text{ ps} \] (single hit)

\[\sigma(T') \approx 465 \text{ ps} \] (double hit)
Conclusion

• Prototype studies with a telescopic structure of 250 μm squared multiclad scintillating fibers have shown the following performances:
 – ca. 8 (mean) collected photons per fiber, observed for all fibers of the prototype (homogeneous detector response)
 – cross talk < 1 %
 – single fiber efficiency of 92 % (OR-logic) and 74 % (AND-logic)
 – fiber layer efficiency of 97 % (OR-logic) and 79 % (AND-logic)
 – timing resolution of ca. 515 ps (single hit) and ca. 410 ps (double hit)

• Performances in the lab and test beam are consistent
• Analysis of the PiM1 test beam data underway
 – Time-of-flight measurement
 – Improvements on the timing algorithm
Outlook

• Preparation of a “large prototype” ongoing
 – confirmation of detector performances (collected light, efficiencies, timing resolutions)
 – first “small” 32 fibers, 64 channels module (measure multi-layer efficiency, study clustering algorithms)
 – to be tested in October 2015 in PiM1 @ PSI
Backup
Test Beam - PiM1

- **Momentum:** $p = 115$ MeV/c (e^+, μ^+, π^+)
- **Beam size:** $(\sigma_x, \sigma_y) = (6.6 \text{ mm, } 9.4 \text{ mm})$
- **Total rate:** $\sim 5.8 \times 10^5$ particles/s @ 2.2 mA proton current
- Particle separation by time-of-flight
Results – Test Beam PiM1

• Time-of-flight measurement

events scaled by a factor 10 for π^+, μ^+
Results 250 μm – Source

- Collected light (NPhe) – Single SiPM (readout of one fiber end) – Threshold 0.5 NPhe
Results 250 µm – Source

- Timing: Custom waveform analysis with offline constant fraction discrimination – Threshold 0.5 Nphe (AND logic)

Single Gaussian Fit

\[\sigma(T) \approx 555 \text{ ps} \]

\[\sigma(T') \approx 400 \text{ ps} \]

\[\sqrt{2} \]