

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The Compact Muon Beam Line

Felix Anton Berg PhD Seminar 27.8.2015 PSI

MEG II and Phase I of Mu3e will share the π E5 surface muon channel.

 π E5 is one of the highest flux muon sources worldwide.

For a later phase II of Mu3e possibilities for a new high intensity muon beam line are under investigation in the HiMB project at PSI \rightarrow talk by Zachary Hodge

Overview floormap

Requirements on Compact Muon Beam Line

Beam requirements:

- Surface μ⁺ 28 Mev/c (~kinematic edge)
- high transmission optics
- Small achromatic beam spot on target
- Small momentum byte ($\frac{\delta p}{p_0} = 7 \% FWHM$)
- Minimization of background ($e^+ \& \pi^+$)

Initial Simulation

(mm)

Optical Design

1st order TRANSPORT Fit

G4Beamline from intermediate position

Simulation

G4Beamline predictions: Transmission to Solenoid injection: ~90% Spot-size @ solenoid injection: $\sigma_x = 27 \text{ mm } \sigma_y = 23 \text{ mm}$ Spot-size @ solenoid center: $\sigma_x = 8 \text{ mm } \sigma_v = 8 \text{ mm}$

CMBL Testbeam setup

Staged setup with available elements (not all optimal)

Beam time: end of 2014 & may 2015

CMBL measurements

Staged setup

Goals:

- Optimize on transmission
- Profile measurements
- Phase space measurements
- Determine e⁺ contamination and separation quality

Staged approach:

Measurement principle

XY - Scanner (Stage II position): Pill Scintillator \rightarrow PMT \rightarrow Discriminator \rightarrow Digitizer

Phase Space Reconstruction

 \rightarrow Very good agreement between reconstruction and data.

Rate @ stage I and Separation

Rate stage I (depends on proton beam centering)

Scan with GaussFit

Separator Scan

Separation power 2.5 mm/A \rightarrow 85 mm separation \approx 5.7 σ_{μ}

Detector Signal

Profiles

Stage I

Stage III – final focus

2 D Gauss Fit 1 σ border is shown as blue ellipse \rightarrow No XY – correlation

G4Beamline simulation from reconstructed phase space

PAUL SCHERRER INSTITUT

Optimize transmission through last part

Losses along beamline:

Major losses occur at the ASK (second bending magnet) vacuum chamber aperture.

→ Improve transmission by reoptimizing simulations without aperture constraints by second bending magnet

→ 87% transmission feasible for lowering ASK aperture constraints

→ Improve transmission of first part by simulating full PiE5 with HiMB model beam from Z. Hodge

- Design solution found for the Compact Muon Beam Line which meets the requirements (Split Triplet)
- First beam tests carried out with available elements at PSI (not optimal wrt vacuum chamber apertures)
- Full characterization of the transverse phase space at different locations along the beamline
- Optimization of beam line elements based on phase space measurements
- Complete description of π E5 beam channel is ongoing

Thank you for your attention!