

Physik-Institut

Lepton Flavor Violation in Composite Higgs Models with Partial Compositeness

Andrea Pattori

Joint ETH-PSI-UZH PhD Seminar PSI, 27.08.2015

F. Feruglio, P. Paradisi, A.P. (in preparation)

- Composite Higgs Models and Partial Compositeness scenario
- A model independent approach: the spurionic analysis
- An explicit dynamical model and its predictions
- Conclusions

And	Irea	Pattori	

The hierarchy problem and its possible solutions

- **Hierarchy Problem**: Huge mass gap between Planck scale ($\sim 10^{18}$ GeV) and EW scale (~ 100 GeV).
- Possible solutions:
 - Disregard for naturalness argumentations
 - Multiverse reformulation of the problem
 - Anthropic selection
 - Likelihood of SM vacuum in the multiverse scenario
 - New physics at the TeV scale
 - Supersymmetry
 - Composite Higgs models
 - "Large" compactified extra dimension(s)

The Higgs as a resonance of a strong interacting sector:

And	Iroa	Dat	tori
AIIU	ii ca	ı aı	UII

The Higgs as a resonance of a strong interacting sector:

Andrea Pattori	PSI, 27.08.2015	page 4/13

Andrea Pattori	PSI, 27.08.2015	page 4/13

Andrea Pattori	PSI, 27.08.2015	page 4/13

Pros:

Cons

- Solving the hierarchy problem
- Addressing the SM flavor puzzle

New flavor violating interactions

Andrea Pattori

PSI, 27.08.2015

page 4/13

New set of vector-like heavy fermions.

Extend the lepton flavor group: $G_f = SU(3)^6 = SU(3)_\ell \times SU(3)_{\tilde{e}} \times SU(3)_{L_L} \times SU(3)_{L_R} \times SU(3)_{\tilde{E}_L} \times SU(3)_{\tilde{E}_R}$ SM flavor groupextension

Andrea Pattori	PSI, 27.08.2015	page 5/13

New set of vector-like heavy fermions.

Extend the lepton flavor group:

 $G_{f} = SU(3)^{6} = SU(3)_{\ell} \times SU(3)_{\tilde{e}} \times SU(3)_{L_{L}} \times SU(3)_{L_{R}} \times SU(3)_{\tilde{E}_{L}} \times SU(3)_{\tilde{E}_{R}}$ $SM \text{ flavor group} \qquad \text{extension}$

The most general set of **spurions**:

$$\begin{array}{ll} m \to V_{L_L} m V_{L_R}^{\dagger} , & \Delta \to V_{\ell} \Delta V_{L_R}^{\dagger} , & Y_R^* \to V_{L_L} Y_R^* V_{\tilde{E}_R}^{\dagger} \\ \tilde{m} \to V_{\tilde{E}_L} \tilde{m} V_{\tilde{E}_R}^{\dagger} , & \tilde{\Delta} \to V_{\tilde{e}} \tilde{\Delta} V_{\tilde{E}_L}^{\dagger} , & Y_L^* \to V_{L_R} Y_L^* V_{\tilde{E}_L}^{\dagger} \end{array}$$

New set of vector-like heavy fermions.

Extend the lepton flavor group:

 $G_{f} = SU(3)^{6} = SU(3)_{\ell} \times SU(3)_{\tilde{e}} \times SU(3)_{L_{L}} \times SU(3)_{L_{R}} \times SU(3)_{\tilde{E}_{L}} \times SU(3)_{\tilde{E}_{R}}$ $SM \text{ flavor group} \qquad \text{extension}$

The most general set of **spurions**:

$$\begin{split} m &\to V_{L_L} m V_{L_R}^{\dagger} , \qquad \qquad \Delta \to V_{\ell} \Delta V_{L_R}^{\dagger} , \\ \tilde{m} &\to V_{\tilde{E}_L} \tilde{m} V_{\tilde{E}_R}^{\dagger} , \qquad \qquad \tilde{\Delta} \to V_{\tilde{e}} \tilde{\Delta} V_{\tilde{E}_L}^{\dagger} , \end{split}$$

$$Y_R^* \to V_{L_L} Y_R^* V_{\tilde{E}_R}^\dagger$$
$$Y_L^* \to V_{L_R} Y_L^* V_{\tilde{E}_L}^\dagger$$

too dangerous: is set to 0

Flavor violating observables for charged leptons.

EFT approach:

 $(Q_{\varphi l}^{(1)})_{ij} = (\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{\ell}_{Li} \gamma^{\mu} \ell_{Lj})$ $(Q_{\varphi l}^{(3)})_{ij} = (\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu}^{I} \varphi) (\bar{\ell}_{Li} \tau^{I} \gamma^{\mu} \ell_{Lj})$ $(Q_{\varphi e})_{ij} = (\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{e}_{Ri} \gamma^{\mu} e_{Rj})$

 $(Q_{e\gamma})_{ij} = (\bar{\ell}_{Li}\sigma^{\mu\nu}e_{Rj})\varphi F_{\mu\nu}$ $(Q_{e\varphi})_{ij} = (\varphi^{\dagger}\varphi)(\bar{\ell}_{Li}e_{Rj}\varphi)$

 $(Q_{ll})_{ijmn} = (\bar{\ell}_{Li}\gamma_{\mu}\ell_{Lj})(\bar{\ell}_{Lm}\gamma^{\mu}\ell_{Ln})$ $(Q_{ee})_{ijmn} = (\bar{e}_{Ri}\gamma_{\mu}e_{Rj})(\bar{e}_{Rm}\gamma^{\mu}e_{Rn})$ $(Q_{le})_{ijmn} = (\bar{\ell}_{Li}\gamma_{\mu}\ell_{Lj})(\bar{e}_{Rm}\gamma^{\mu}e_{Rn})$

Andrea Pattori	PSI, 27.08.2015	page 6/13

Flavor violating observables for charged leptons.

EFT approach:

 $(Q_{\varphi l}^{(1)})_{ij} = (\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{\ell}_{Li}\gamma^{\mu}\ell_{Lj}) \qquad (Q_{e\gamma})_{ij} = (\bar{\ell}_{Li}\sigma^{\mu\nu}e_{Rj})\varphi F_{\mu\nu} \qquad (Q_{ll})_{ijmn} = (\bar{\ell}_{Li}\gamma_{\mu}\ell_{Lj})(\bar{\ell}_{Lm}\gamma^{\mu}\ell_{Ln})$ $(Q_{\varphi l}^{(3)})_{ij} = (\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}^{I}\varphi)(\bar{\ell}_{Li}\tau^{I}\gamma^{\mu}\ell_{Lj}) \qquad (Q_{e\varphi})_{ij} = (\varphi^{\dagger}\varphi)(\bar{\ell}_{Li}e_{Rj}\varphi) \qquad (Q_{ee})_{ijmn} = (\bar{e}_{Ri}\gamma_{\mu}e_{Rj})(\bar{e}_{Rm}\gamma^{\mu}e_{Rn})$ $(Q_{\varphi e})_{ij} = (\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{e}_{Ri}\gamma^{\mu}e_{Rj}) \qquad (Q_{e\varphi})_{ij} = (\varphi^{\dagger}\varphi)(\bar{\ell}_{Li}e_{Rj}\varphi) \qquad (Q_{le})_{ijmn} = (\bar{\ell}_{Li}\gamma_{\mu}\ell_{Lj})(\bar{e}_{Rm}\gamma^{\mu}e_{Rn})$

Spurionic analysis. Deriving either:

- Constraints on the mass scale of the CH sector
- Hypothesis on the structure of the spurions

The spurionic approach: results

- Classification of the spurionic structures
- Model independent phenomenological analysis of LFV
- Showed that $Y_L^* = 0$ could be not sufficient
- Identified an Intermediate Flavor Violation (IFV) scenario: m, \tilde{m}, Y_R^* aligned

Considering a specific dynamical model (Contino et al., arXiv:hep-ph/0612180).

Andrea Pattori	PSI, 27.08.2015	page 8/13

Anexpiritmedel

Considering a specific dynamical model (Contino et al., arXiv:hep-ph/0612180).

Lagrangian:

Andrea Pattori Andrea Pattori

The Lagrangian for the composite states

Mass mixing terms

The Higgs Lagrangian

PSI 27.08.2015 Zurich 27.08.2015

Considering a specific dynamical model (Contino et al., arXiv:hep-ph/0612180).

Lagrangian:

Mass mixing terms

The Higgs Lagrangian

Andrea Pattor

Zürich, 27.08.2015

Considering a specific dynamical model (Contino et al., arXiv:hep-ph/0612180).

Lagrangian:

Andrea

Zürich. 27.08.2015

Considering a specific dynamical model (Contino et al., arXiv:hep-ph/0612180).

Lagrangian:

Zurich, 27.08.2015

page 8

Lepton content:

SM leptons: ℓ_L , e_R .
Heavy leptons: L_L , L_R , E_L , E_R . $G_f = SU(3)^6$

Andrea Pattori	PSI, 27.08.2015	page 9/13

Lepton content:

SM leptons: ℓ_L , e_R .
Heavy leptons: L_L , L_R , E_L , E_R . $G_f = SU(3)^6$

Spurions:

- Mass terms: $\mathcal{L}_{mass} = -m\bar{L}L \tilde{m}\bar{E}E + h.c.$
- Yukawa: $\mathcal{L}_{yuk} = -Y_R \bar{L}_L \phi E_R Y_L \bar{L}_R \phi E_L + h.c.$
- Mass mixing: $\mathcal{L}_{mix} = -\Delta \bar{\ell}_L L_R \tilde{\Delta} \bar{e}_R E_L + h.c.$

Lepton content:

SM leptons: ℓ_L , e_R .
Heavy leptons: L_L , L_R , E_L , E_R . $G_f = SU(3)^6$

Spurions:

- Mass terms: $\mathcal{L}_{mass} = -m\bar{L}L \tilde{m}\bar{E}E + h.c.$
- Yukawa: $\mathcal{L}_{yuk} = -Y_R \bar{L}_L \phi E_R Y_L \bar{L}_R \phi E_L + h.c.$
- Mass mixing: $\mathcal{L}_{mix} = -\Delta \bar{\ell}_L L_R \tilde{\Delta} \bar{e}_R E_L + h.c.$

- We have performed explicit calculations:
- Confirmed the presence of the predicted spurionic structures
- Explicit one-loop result for the dipole operator $(Q_{e\gamma})_{ij} = (\bar{\ell}_{Li}\sigma^{\mu\nu}e_{Rj})\varphi F_{\mu\nu}$
- Phenomenological predictions for various observables

And	Irea	Pat	tori

Analysing $BR(\mu \rightarrow e\gamma)$

Andrea Pattori

PSI, 27.08.2015

page 11/13

Analysing $BR(\mu \rightarrow e\gamma)$

And	Irea	Pattori	
	nca	i allon	

Analysing $BR(\mu \rightarrow 3e)$

Andrea Pattori

PSI, 27.08.2015

page 12/13

Analysing $BR(\mu \rightarrow 3e)$

- From general spurionic approach:
 - Thorough classification of the spurionic structures
 - Prescriptions for viable TeV scale scenarios (IFV)
- From explicit dynamical model:
 - Confirmation of the spurionic analysis
 - Detailed phenomenological analysis

- From general spurionic approach:
 - Thorough classification of the spurionic structures
 - Prescriptions for viable TeV scale scenarios (IFV)
- From explicit dynamical model:
 - Confirmation of the spurionic analysis
 - Detailed phenomenological analysis

Thank You