

Electroweak Penguin decays at LHCb Joint UZH-ETH-PSI PhD Seminar 2015

Espen Eie Bowen

Universität Zürich

27th August 2015

Overview

Introduction

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

S,P,D-wave contributions to $B^0 \rightarrow K^+ \pi^- \mu^+ \mu^-$

Conclusion

Rare electroweak penguin decays

- Rare FCNC processes are only possible via loop diagrams in SM
 - Highly suppressed
- New, heavy particles in SM extensions can enter the loop and modify observables (branching fractions and angular distributions)

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Angular distribution

- ▶ Decay reconstructed as $B^0 \rightarrow K^+ \pi^- \mu^+ \mu^-$
- Fully described by dimuon invariant mass squared (q^2) and three angles $\vec{\Omega} = (\cos \theta_l, \cos \theta_K, \phi)$

Observables

The differential decay distribution is given by:

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\vec{\Omega}}\Big|_{\rm P} = \frac{9}{32\pi} \Big[\frac{3}{4}(1 - F_{\rm L})\sin^2\theta_K + F_{\rm L}\cos^2\theta_K + \frac{1}{4}(1 - F_{\rm L})\sin^2\theta_K\cos2\theta_l - F_{\rm L}\cos^2\theta_K\cos2\theta_l + S_3\sin^2\theta_K\sin^2\theta_l\cos2\phi + S_4\sin2\theta_K\sin2\theta_l\cos\phi + S_5\sin2\theta_K\sin\theta_l\cos\phi + \frac{4}{3}A_{\rm FB}\sin^2\theta_K\cos\theta_l + S_7\sin2\theta_K\sin\theta_l\sin\phi + S_8\sin2\theta_K\sin2\theta_l\sin\phi + S_9\sin^2\theta_K\sin^2\theta_l\sin2\phi\Big]$$

- Additional sets of observables, for which the leading form-factor uncertainties cancel, can be built from F_L and S₃ to S₉
 - e.g. $P'_{4,5} = S_{4,5} / \sqrt{F_{\rm L}(1 F_{\rm L})}$

Previous analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ at LHCb

- Previous analysis used 1 fb⁻¹ of data taken in 2011
- Less form-factor dependent observables (P'_i) introduced in [PRL 111, 191801 (2013)] measured for the first time
 - ▶ 3.7 σ local deviation from SM prediction [JHEP 05 (2013) 137] in $P_5^{'}$!

Selection

- Analysis repeated using full 3 fb⁻¹ of Run I data
- ► Resonant modes (B⁰ → J/ψ K^{*0} and B⁰ → ψ(2S)K^{*0}) and peaking backgrounds vetoed with kinematic and PID criteria
- Multivariate classifier used to reduce combinatorial background
 - Kinematic, particle identification and isolation variables used as input

Acceptance correction

- Trigger, reconstruction and selection distort the distributions of q^2 , $\cos \theta_\ell$, $\cos \theta_K$, ϕ
- Acceptance modelled using polynomial paramerisation
- ▶ Validated in data using the control mode $B^0 \rightarrow J/\psi K^{*0}$

S-wave pollution

- ► K^{*0} reconstructed through decay channel $K^{*0} \rightarrow K^+ \pi^-$
- ► Can also have contribution due to $K^+\pi^-$ in non-resonant S-wave configuration
 - ➔ 6 additional observables

$$\frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^3(\Gamma+\bar{\Gamma})}{d\vec{\Omega}} \bigg|_{S+P} = (1-F_S) \left. \frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^3(\Gamma+\bar{\Gamma})}{d\vec{\Omega}} \right|_P + \frac{3}{16\pi} F_S \sin^2\theta_\ell + S-P \text{ interference}$$

- P-wave observables scaled by factor $(1 F_S)$
- Simultaneous fit performed to $m_{K\pi}$ to constrain F_S

Angular fit

- ▶ Analysis performed in several *q*² bins
- 4D+1D simultaneous fit to $m_{K\pi\mu\mu}$, $\cos \theta_{\ell}$, $\cos \theta_{K}$, ϕ and $m_{K\pi}$
- Projections shown for q² bin 1.1 < q² < 6.0 GeV²/c⁴

Results - S_4 , $A_{\rm FB}$

[LHCb-CONF-2015-002]

▶ Good agreement between data and SM prediction for *S*₄

• Data tends to lie systematically below SM prediction at low q^2 for $A_{\rm FB}$

Results - P'_5

- Deviation at level of 2.9σ in both bins [4.0,6.0] and [6.0,8.0] GeV²/c⁴
- Naive combination results in significance of 3.7σ
- Discrepancy in P'₅ confirmed!
- Compatible with 1 fb⁻¹ analysis [PRL 111, 191801 (2013)]

Results - P'_5

- Deviation at level of 2.9σ in both bins [4.0,6.0] and [6.0,8.0] GeV²/c⁴
- Naive combination results in significance of 3.7σ
- Discrepancy in P'₅ confirmed!
- Compatible with 1 fb⁻¹ analysis [PRL 111, 191801 (2013)]

S,P,D-wave contributions to $B^0 \rightarrow K^+ \pi^- \mu^+ \mu^-$

S,P,D-wave contributions to $B^0 \rightarrow K^+ \pi^- \mu^+ \mu^-$

- ▶ So far analyses at LHCb have focused on the *K**(892) region
- However, there are many other interesting K^* states at higher $m_{K\pi}$

	mass (MeV)	full width (MeV)	J^P
K*(892)	895.81 ± 0.19	47.4 ± 0.6	1-
$K^{*}(1410)$	1414 ± 15	232 ± 21	1-
$K_0^*(1430)$	1425 ± 50	270 ± 80	0^+
$K_2^*(1430)$	1432.4 ± 1.3	109 ± 5	2+
$K^{*}(1680)$	1717 ± 27	322 ± 110	1-

- Region of *m_{Kπ}* ~1400 MeV should contain contributions from S-,P- and D-waves
 * Previously unexplored!
- Analysis dedicated to measurements in this region currently ongoing

Analysis strategy

[arXiv:1505.02873]

- ▶ Selection/acceptance correction very similar to *K**(892) analysis
- However, with contribution from S-,P- and D-waves, the differential decay distribution increases in complexity
 - → 41 observables!
 - X Unfeasible for a Likelihood fit
- Expand in a basis of 41 orthonormal angular functions, $f_i(\vec{\Omega})$

$$\frac{d\Gamma}{dq^2 d\vec{\Omega}} = \mathcal{C} \times \left\{ \sum_{i=1}^{41} f_i(\vec{\Omega}) \Gamma_i(q^2) \right\} \text{ where } \int f_i(\vec{\Omega}) f_j(\vec{\Omega}) d\vec{\Omega} = \delta_{ij}.$$

► The orthonormal angular basis is constructed out of the spherical harmonics $Y_{\ell}^m \equiv Y_{\ell}^m(\theta_l, \phi)$ and the reduced spherical harmonics $P_{\ell}^m \equiv \sqrt{2\pi}Y_{\ell}^m(\theta_K, 0)$.

Method of Moments

- ★ Exploiting the orthonormal basis allows each Γ_i observable to be measured individually using a <u>method of moments</u> approach
- Within a given q^2 bin:

$$P(\vec{\Omega}) = \sum_{i} f_{i}(\vec{\Omega})\Gamma_{i}$$

$$\Gamma_{i} = \int_{\Omega} d\vec{\Omega} P(\vec{\Omega}) f_{i}(\vec{\Omega}) \equiv E_{P}[f_{i}]$$

e.g. $\widehat{\Gamma_{i}} = \frac{1}{N} \sum_{e} f_{i}(\vec{\Omega_{e}})$

- ★ Complex likelihood fit replaced by simple counting method!
- \star Able to measure all 41 observables and their corresponding covariance matrix

Conclusions

- ▶ Rare electroweak penguin decays are powerful probes in the search for NP
- Angular analysis of B⁰ → K^{*0}µ⁺µ⁻ shows intriguing hints of deviations from SM predictions in the observable P'₅
- Ongoing analysis will probe the angular distribution in a previously unexplored region of $m_{K\pi}$ using a <u>method of moments</u> approach

The LHCb experiment

- LHCb is the dedicated heavy flavour physics experiment at the LHC
- Its primary goal is to look for indirect evidence of new physics in CP violation and rare decays of beauty and charm hadrons
- This requires:
 - 1. Excellent tracking
 - momentum resolution($\Delta p/p \sim 0.4\% 0.6\%$)
 - impact parameter resolution ($\sigma_{IP} \sim 20 \ \mu m$)
 - primary vertex resolution (13 μ m in *x* and *y* and 71 μ m in *z*)
 - 2. Excellent decay time resolution ($\sigma_{\tau} \sim 45$ fs)
 - 3. Excellent particle identification

Results - F_L , S_3 , S_4 , S_5

5/5