The XXIII European Synchrotron Light Source Workshop

Towards the low emittance upgrade for the CANDLE storage ring

A. Sargsyan

24/11/2015

www.candle.am

Outline

> Introduction

- Scenarios for low emittance upgrade
 - DBA lattice option
 - 4BA lattice option
- Possibility of low alpha operation
 - modification of original beam optics
 - implementation of inverse bend magnets
- Next Steps

Introduction

Introduction

A non-complete list of storage rings

Name	Lattice type	Emit. (nm)	Energy (GeV)	Circ. (m)
ANKA	DDBA	46	2.5	110
ALS	ТВА	2	1.9	197
CANDLE	DBA	8.4	3	216
ELETTRA	DBA	7	2.4	259
SLS	ТВА	4.8	2.4	288
SOLEIL	DBA	3.9	2.75	354
DIAMOND	DBA	2.7	3	560
ESRF	DBA	4	6	844
APS	DBA	2.5	7	1104
SPring-8	DBA	3.4	8	1436

$$\varepsilon[nm\,rad] = 1470\,E[GeV]^2 \frac{I_5}{J_x I_2} \sim \frac{E^2}{N_b^3}$$

$$J_x = 1 - \frac{I_4}{I_2}$$

Beam emittance in case of 216m circumference and 3 GeV energy

Introduction

- Implementation of MBA lattice cells -> large number of cells -> profit from the cubic scaling of emittance with angle per bending magnet
- Implementation of LGBs \longrightarrow Longitudinal field variation to "compensate" H_x variation \longrightarrow minimize I_5
- Implementation of vertically focusing bending magnets \longrightarrow maximize J_x
- Implementation of damping wigglers \longrightarrow strengthen the radiation damping

• etc.

Name	Lattice type	Emit. (pm)	Energy (GeV)	Circ. (m)
ANKA upgrade study	4BA	8600	2.5	110
ALS upgrade study	6-10BA	100	2.0	200
ELETTRA upgrade study	6BA	280	2.0	260
SLS upgrade studies	Hybrid 7BA	135	2.4	288
SIRIUS	5BA	280	3.0	518
MAX-IV	7BA	326	3.0	528
DIAMOND upgrade	4BA	280	3.0	562
ESRF upgrade	Hybrid 7BA	132	6.0	844
APS upgrade	Hybrid 7BA	65	6.0	1104
SPRING 8 upgrade study	6-10BA	68	6.0	1436

Scenarios for low emittance upgrade

Necessity for CANDLE storage ring low emittance upgrade!

Considered approaches

- 1. use more compact magnets with combined fields and keep the type of cells and the length of the ring circumference unchanged
- 2. apply MBA concept

Solutions so far

- 1. Emittance reduction from 8.4nm to 5.2nm
- 2. 4BA lattice providing 1.1nm beam emittance, however within 258m circumference instead of 216m

DBA lattice option

Betafunctions [m]

y [mm]

Modified DBA cell **Magnets** Dipole QF1 QF2 Num. of magnets 48 48 24 0.2 Length (m) 0.3 1 η_x 0.15 Bend. angle (°) 7.5 -25-0.10 Quad. component (T/m) -9 38.2 33.92 0.05 Sext. component (T/m²) -59.2 76.81 236.55 Ξ 20. 0.00 -0.05 -0.10 Disbersion Dipoles and quads 15 Compensate contain sextupole chromaticity 10- β_v -0.20 component where it's -0.25 5 -0.30 created β_x -0.35 0+ 0 8 Limited flexibility QF1 QF2 в QF1 в 20 ∆p/p=0% Parameter Value $\Delta p/p = -3\%$ Circumference (m) 216 15 ----- ∆p/p=3% Lattice type DBA Number of cells 24 10 4.4 Straight section length (m) Beam Energy (GeV) 3 5 Hor. emittance (nm rad) 5.2 2.1 RF momentum acceptance (%) 0 14.17/3.19 Betatron tunes (h/v)-30 -20 -10 10 20 30 40 -40 0 x [mm] Natural chromaticities (h/v)-13.64/ -24.27 On and off momentum DA 0.0027 Momentum compaction

DBA lattice option

DBA lattice option

4BA lattice option

	Magnets	Bend. angle	Quad. comp.	Sext. Comp.
		(°)	(T/m)	(T/m²)
_	B1 (1m)	6.25	-11	-36.5
<u>E</u>	B2 (0.9m)	5	-13.1	-210
'SIOL	QD (0.35 m)	-	-25.8	-391
spei	QF1 (0.4 m)	-	33.9	228
ā	QF2 (0.3 m)	-	6.9	-369
	QF3 (0.44 m)	-	36	345
-	QF4 (0.4 m)	-	34.5	1060
	5 (0.2 m)	-	-	-896
		-		

Parameter	Value	
Circumference (m)	258	
Lattice type	4BA	
Number of periods	16	
Straight section length (m)	4.2	
Beam Energy (GeV)	3	
Hor. emittance (nm rad)	1.1	
RF momentum acceptance (%)	3.9	
Betatron tunes (h/v)	24.61/14.37	
Natural chromaticities (h/v)	-38.27/-26.04	
Momentum compaction	0.0007	

4BA lattice option

4BA lattice option

Comparison

Beam emittance in case of 216m circumference and 3 GeV energy

Target

the decrease of alpha by two orders compared with 0.002 value of original CANDLE lattice

minimal modifications of the design lattice

Considered approaches

- 1. modification of the original beam optics by changing magnet fields
- 2. implementation of inverse bend magnets

<u>Solutions so far</u>

- 1. the reduction of alpha at the expense of the beam emittance increase by factor of about 7
- 2. twice lower emittance than in the first case but smaller momentum acceptance

MCF and longitudinal beam dynamics

For independent control of transverse chromaticities and α_1 (longitudinal chromaticity) at least three families of sextupoles are needed.

Changing magnet fields

the standard approach of introducing negative dispersion in the straight sections

Parameter	Original lattice	1 st solution
α_0	2*10 ⁻³	2*10 ⁻⁵
α_1 (with/without sext. opt.)	3*10 ⁻³	10-4/-7.3*10-3
Emittance (nm rad)	8.4	59
rms energy spread (%)	0.104	0.095
RF momentum acceptance (%)	2.4	10
Betatron tunes h/v	13.22/4.26	12.22/4.26
Natural chrom. h/v	-18.93/-14.89	-18.73/-13.65
$\beta_{\rm x}/\beta_{\rm y}$ at straight section mid. (m)	7.9/4.9	13.3/5.4
Maximum dispersion (m)	0.34	0.58

Sextupole optimization was done using Elegant

On and off momentum DA

Changing magnet fields

0.5 0.4 0.3 20-0.2 the standard approach 0.1 Dispersion [m] Betafunctions [m] 0.0 -0.1 of introducing negative -0.2 -0.3 -0.4 -0.5 dispersion in the straight sections -0.6 -0.7 5 -0.8 -0.9 ß, -1.0 0 $10_{\rm SDI}$ 0 6 QFC 12 2 4 8 SDI Original Parameter 1st solution OF OD SD ODOF В SF SF SD В lattice 2*10⁻³ 2*10⁻⁵ α_0 3rd family of sextupoles for α_1 (with/without sext. opt.) 3*10⁻³ 10-4/-7.3*10-3 simultaneous control of Emittance (nm rad) 8.4 59 chromaticities and α_1 rms energy spread (%) 0.104 0.095 40 $\Delta p/p=0\%$ RF momentum acceptance (%) 2.4 10 $\Delta p/p=-3\%$ Betatron tunes h/v 10 Nat RF MA $\beta_{\rm x}$ 5 Maximum dispersion® 0 MA Lat. MA -5 Sex -10 was 100 0 50 150 200 s[m] On and off momentum DA

Addition of inverse bend magnets

introducing inverse bending magnets (IB) in the area between defocusing SD and focusing SF sextupoles

Parameter	Original lattice	2 nd solution
<i>α</i> ₀	2*10 ⁻³	10 ⁻⁴ (2*10 ⁻⁵ is infeasible)
$lpha_1$ (with/without sext. opt.)	3*10 ⁻³	4*10 ⁻³ /6.3*10 ⁻³
Emittance (nm rad)	8.4	27
rms energy spread (%)	0.104	0.116
RF momentum acceptance (%)	2.4	1.25
Betatron tunes h/v	13.22/4.26	13.22/4.26
Natural chrom. h/v	-18.93/-14.89	-14.14/-19.13
$\beta_{\rm x}/\beta_{\rm y}$ at straight section mid. (m)	7.9/4.9	3.37/4.17
Maximum dispersion (m)	0.34	0.44

In 2^{nd} case we were not able to make any significant change in α_1 without exceeding the maximum attainable field of new sextupole family

0.22m long dipoles with -2.75° bending angle

Addition of inverse bend magnets

On and off momentum DA

Next steps

- 1. More research of nonlinear beam dynamics
- 2. Search of better working points
- 3. Dynamic aperture optimization with MOGA
- 4. Search of another low emittance solutions

THANK YOU FOR ATTENTION