KU LEUVEN

Testing the Standard Model in beta-decay: status and prospects

PSI 2016 October 20th, 2016

Nathal Severijns KU Leuven University, Belgium

Outline

- Exotic weak currents
 - scalar / tensor contributions β-ν correlation / beta asymmetry measurements
- Nuclear / neutron beta decay versus LHC
- Weak magnetism
- Beta spectrum shape measurements

1. Exotic weak currents (scalar, tensor)

a) β -v correlation

!!! for pure transitions weak interaction results are independent of nuclear matrix elements !!!

(assuming maximal P-violation and T-invariance for V and A interactions)

recoil corr. (induced form factors) $\approx 10^{-3}$; radiative corrections $\approx 10^{-4}$

Limits on scalar currents

ongoing experiments in search for scalar weak currents:

Tensor currents - α - β - ν correlation with Paul-trapped ⁸Li lons

Tensor currents - LPCTrap @ GANIL - ⁶He

2006 (⁶He): $a_{\beta\nu} = -0.3335(73)_{stat}(75)_{syst}$ X. Fléchard et al. J. Phys. G 38 (2011) 055101 **Understand Second Problem 1 Understand Second Problem 1 Understand Second Problem 1 Understand Second**

Tensor currents - ⁶He MOT Trap setup @ Univ. Washington, Seattle

Tensor currents - ⁶He EIB Trap (Weizmann Inst., Univ. Jerusalem, ...)

(M. Hass, G. Ron et al.)

b) β-asymmetry parameter in nuclear beta decay

β asymmetry – Leuven / ISOLDE / Prague 3/3

Limits on tensor currents

2. Measurements in nuclear/neutron β decay in the LHC era

nuclear and neutron decay, pion decay

O. Naviliat-Cuncic and M. Gonzalez-Alonso Annalen der Physik 525 (2013) 600.

V. Cirigliano, et al., J. High. Energ. Phys. 1302 (2013) 046

limits on scalar/tensor couplings obtained by CMS collaboration in $pp \rightarrow e + MET + X$ channel

S. Chatrchyan et al. (CMS Collab.) J. High. Energ. Phys. 08 (2012) 023

3. Good knowledge of induced / recoil terms required

 \rightarrow affects values for correlation coefficients at level of per mil to 1%

KU LEUV

weak magnetism term b_{WM} (CVC) (N.S. et al., in prep.)

T = 1/2 $J^{\pi} \rightarrow J^{\pi}$ mirror β transitions

$$b_{WM}(\beta^{\mp}) = A \sqrt{\frac{J}{J+1}} M_F^0 \mu^{\mp}$$
$$\mu^{\mp} = \mp (\mu_M - \mu_D)$$

F.P. Calaprice and B.R. Holstein, NP A 273 (1976) 301

 $c = g_A M_{GT}$ from $\Im t$ -value

N. Severijns, I.S. Towner et al., PR C 78 (2008) 055501

weak magnetism term **b**_{WM} - **experimental data**

mirror β transitions: - updated Ft-values (A < 75; rel. prec. < 0.2% for A < 41) - extracted weak magnetism form factor

weak magnetism term **b**_{WM} - **experimental data**

weak magnetism b_{WM} - mirror β transitions

also of interest to Reactor Neutrino Anomaly

Poster by L. Hayen

New vistas and prospects in the LHC era

- new generation of (trap-based) correlation experiments
 - towards 0.1% precision level \rightarrow
- precise β -spectrum shape measurements:

$$d\Gamma \propto G_F F(Z,E) \left[1 + k \frac{1}{E_{\beta}} b_{Fiers} + k' E_{\beta} b_{WM} \right]$$

b_{Fierz} : scalar / tensor weak currents

- **b**_{WM} : weak magnetism (Standard Model term)
 - induced by strong interaction because decaying quark is not free but bound in a nucleon;
 - is to be known better when reaching sub-percent precisions

KU LEUV

Note the different energy dependence of both effects !!

4. β spectrum shape measurements

Table VI Overview of the features present in the β spectrum shape (Eq. (4)), and the effects incorporated into the Beta Spectrum Generator Code. Here the magnitudes are listed as the maximal typical deviation for medium Z nuclei with a few MeV endpoint energy. Some of these corrections fall off very quickly (e.g. the exchange correction, X) but can be sizeable in a small energy region. Varying Z or W_0 can obviously allow for some migration within categories for several correction terms.

Item	Effect	Formula	Magnitude
1	Phase space factor	$pW(W_0 - W)^2$	Unity or larger
2	Traditional Fermi function	F_0 (Eq. (5))	Unity of larger
3	Finite size of the nucleus	L_0 (Eq. (17))	
4	Radiative corrections	R (Eq. (27))	Analytical description + code,
5	Shape factor	C (Eq. (125))	accurate to few 10 ⁻⁴ level
6	Atomic exchange	X (Eq. (63))	L Hoven N Soverijne et el in pren
7	Atomic mismatch	r (Eq. (76))	L. Hayen, N. Severijns et al., in prep.
8	Atomic screening	S (Eq. (54)) ^a	
9	Shake-up	See item 7 & Ee	н. (<mark>66</mark>) ^в
10	Shake-off	See item 7 & Ee	A. (69) & χ_{ex}^{cont}
11	Distorted Coulomb potential due to recoil	Q (Eq. (26))	
12	Diffuse nuclear surface	U (Eq. (20))	
13	Recoiling nucleus	R_N (Eq. (22))	
14	Molecular screening	ΔS_{Mol} (Eq. (81	
15	Molecular exchange	Case by case	nucleus
16	Bound state β decay	Γ_b/Γ_c (Eq. (77)	\overline{O} θ
17	Neutrino mass	Negligible	\bigcirc v
18	Forbidden decays	Not incorporate	d e
			Poster by L. Hayen

^a Here the Salvat potential of Eq. (57) is used with X (Eq. (55)) set to unity.

- ^b The effect of shake-up on screening was discussed in Sec. VI.C.1 with Eq. (66).
- ^c Shake-off influences on screening and exchange corrections were discussed separately in Sec.

to be evaluated in a case

miniBETA spectrometer (Leuven / Krakow)

two 2 mm segmented Si detectors in B- field, replacing UCNA MWPCs

Beta energy spectrum shape in ⁶He decay - NSCL/MSU (O. Naviliat-Cuncic et al.)

- Long term goal: Measure the Fierz interference term
 (b) in ⁶He decay to search for weak tensor currents.
- <u>Current goal</u>: measure the <u>weak magnetism</u> (WM) form factor in ⁶He decay for a tests of the strong form of CVC. The WM is the largest "hadronic SM background" in a measurement of *b*.

 Principle: use a fragmented separated beam to eliminate distortions in beta spectrum due to back-scattering, outscattering or dead-layers.

Effect of weak magnetism

microcalorimeter measurements (CEA-Saclay)

X. Mougeot et al., PR A 86 (2012) 042506 and PR A 90 (2014) 012501

Conclusions and Outlook

- 1. β -v correlation and β asymmetry measurements + Ft-values \rightarrow improved limits on scalar and tensor type weak currents;
- 2. searches for new physics (bosons) at low energies are competitive with direct searches at LHC for 10⁻³ precisions of *b* and beyond many experiments ongoing or in preparation / planned
- **3.** at sub-0.5% level of precision have to include effects induced by strong interaction
 - → largest is weak magnetism
 - → best observable: **beta-spectrum shape**

scalar / tensor currents & weak magnetism

KUI

if particles that mediate new interactions are above threshold for LHC → Effective Field Theory allowing direct comparison of low-energy and collider constraints

Iow-scale O(1 GeV) effective Lagrangian for semi-leptonic transitions (contributions from W-exchange diagrams and four-fermion operators)

link betw. EFT couplings ϵ_i and Lee-Yang nucleon-level effect. couplings C_i:

$$C_i = \frac{G_F(0)}{\sqrt{2}} V_{ud} \bar{C}_i \quad \text{with} \quad \bar{C}_S = g_S(\varepsilon_S + \tilde{\varepsilon}_S), \ \bar{C}_T = 4g_T(\varepsilon_T + \tilde{\varepsilon}_T), \ \dots$$

$$\varepsilon_i, \ \tilde{\varepsilon}_i \approx \ v^2 / \Lambda_{BSM}^2 \quad \text{with} \quad v = (2\sqrt{2} \ G_F^{(0)})^{-1/2} \approx 170 \ \text{GeV}$$

if $\Lambda_{BSM} \sim 5 \ \text{TeV} \rightarrow \varepsilon_i \sim 10^{-3}$

KU LEUV

- T. Bhattacharya et al., Phys. Rev. D 85 (2012) 054512
- V. Cirigliano, et al., J. High. Energ. Phys. 1302 (2013) 046
- O. Naviliat-Cuncic and M. Gonzalez-Alonso, Annalen der Physik 525 (2013) 600.
- V. Cirigliano, et al., Progr. Part. Nucl. Phys. 71 (2013) 93

V_{ud} quark mixing matrix element & CKM unitarity

prospects - 1

1. pure Fermi transitions: - new data to improve Ft values

- testing isospin corrections δ_c
- nucleus-independent radiative correction Δ_R

2. neutron decay: - lifetime (tSPECT, ...)

- beta-asymmetry parameter A (PERKEO, UCNA)
- βv-correlation a (aSPECT, Nab, AbBa, aCORN, ...)

6. β spectrum shape measurements

 $N(p)dp = Kp^2(W - W_0)^2 \cdot F(Z, p) \cdot L_0 \cdot C \cdot R_n \cdot RC \cdot S(E)dp$

- phase space factor x constants
- F(Z,p): Fermi function
- L₀ & C: finite size of nucleus
- *R_n*: finite mass of nucleus
- RC: radiative corrections

KU L

$$\frac{dN}{dE} \approx 1 + \frac{4}{3M_n} \frac{b_{WM}}{Ac} E_e \implies \approx 0.8 \% \text{ MeV}^{-1}$$

(for a pure GT transition and neglecting terms \propto 1/M² and \propto m_e^{2}/E)

$$\Rightarrow \quad d\Gamma \propto G_F \ F(Z,E) \left[1 + k' b_{WM} \ E_{\beta} + k'' \left[\frac{b_{Fier}}{E_{\beta}} + k'' \right] \right]$$