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One class of gravity experiments within the gBounce project focuses on the realization of a Quantum Quantum Bounc ng Ball Measurements
Bouncing Ball, i.e. a measurement of the time evolution of a neutron bouncing above a horizontal - .
plane. In 2014, the spatial probability distribution of this Schrodinger wave packet has been Preliminary Experimental Results
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mea;ured for different opservatlon times vy:th a spatial resolution of about 1.5um. Preparation of the QuantumSystem
We illustrate the role of interference weaving the quantum carpet of several quantum states: Luiy
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After a first quantum reflection, several snapshots show the fall and the rise of the wave packet.  £73- " mirror - scatterer -
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Ultracold neutrons form bound states in the Earth’s * m S <l P S ﬁggﬁ; ‘;‘7’.’“9 Is
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experiments studied these states. One result was the " g o
realization of a resonance spectroscopy method T2
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without the need of any electromagnetically
interacting fields. The measured transition frequencies
were used to constrain Dark Matter and Dark Energy
scenarios. In a recent experiment, we dropped a well-
prepared wave-packet of such states a step of some
tens of microns, let the wave packet evolve in time,
and measured the spatial probability distribution using

track detectors.
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the simulation).
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The probe: Ultracold neutrons... Gravitationally Bound | ‘ ‘ ‘
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Track Detector & Read-out o
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High spatial resolution can be achieved by placing o Height
a polymer (CR39) behind a thin boron layer. The - L y
fission particles cause defects in the polymer T Py - o
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