Search for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at NA62

R. Fantechi CERN and INFN – Sezione di Pisa on behalf of the NA62 Collaboration

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Liverpool, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, Sofia, TRIUMF, Turin, Vancouver (UBC) ~200 participants

Physics of fundamental Symmetries and Interactions - PSI2016 October 16th-20th, 2016

Outline

- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ theory (short reminder)
- NA62 detector layout
- Strategy for the measurement
- Other channels to be studied
- Prospects for the future
- Conclusions

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: clean theoretical environment

FCNC loop processes: s->d coupling Highest CKM suppression

Very clean theoretically No hadronic uncertainties Hadronic matrix element related to the precisely measured BR $(K^+ \rightarrow \pi^0 e^+ \nu)$

SM predictions [Buras et al. JHEP 1511 (2015) 33]

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \cdot \left(\frac{V_{cb}}{0.0407}\right)^{2.8} \cdot \left(\frac{\gamma}{73.2^{0}}\right)^{0.74} = (8.4 \pm 1.0) \cdot 10^{-11}$$
$$BR(K^{0} \to \pi^{0} \nu \overline{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \cdot \left(\frac{V_{ub}}{0.00388}\right)^{2} \cdot \left(\frac{V_{cb}}{0.0407}\right)^{2} \cdot \left(\frac{\sin \gamma}{\sin 73.2^{0}}\right)^{0.74} = (3.4 \pm 0.6) \cdot 10^{-11}$$

 $K \rightarrow \pi v v$ are the most sensitive probes to NP models among B and K decays

The combined measurement of K^+ and K_{L} modes could shed light on the flavour structure of NP ($\Delta S=2 / \Delta S=1$ correlation)

$K \rightarrow \pi v \overline{v} NP$ sensitivity

Today status of $K\to\pi\nu\overline{\nu}$

E787/E949 @Brookhaven: 7 candidates $K^+ \rightarrow \pi^+ v \bar{v}$ 2 experiments, stopped kaon technique Separated K^+ beam(710 MeV/c, 1.6MHz) PID: range (entire $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay chain) Hermetic photon veto system Probability of all events to be background ~ 10⁻³ Expected background: 2.6 events

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$$

Phys. Rev. D77,052003 (2008), Phys. Rev. D79,092004 (2009)

E391a @ KEK: Phys. Rev. D81,072004 (2010) $BR(K_L \to \pi^0 V \overline{V}) < 2.6 \times 10^{-8} (90\% CL)$

Preliminary from 2015 run of KOTO@JPARC: arXiv 1609.03637

$$BR(K_L \to \pi^0 \nu \overline{\nu}) < 5.1 \times 10^{-8} (90\% CL)$$

NA62 goals and challenges

- Collection of O(100) $K^+ \rightarrow \pi^+ v \bar{v}$ events in two years of data taking
 - 10 % measurement of the branching ratio
 - This requires at least 1013 Kaon decays
 - In-flight decay technique
 - 75 GeV beam helps in background rejection
 - Event selection with P_{π} <35 GeV/c
 - i.e. $K_{\pi 2}$ decays have around more than ~40 GeV of electromagnetic energy
- $O(10^{12})$ rejection factor of common K decays
 - Main contribution from $K_{\mu 2}$ (63%) and $K_{\pi 2}$ (21%)
 - Kinematics resolution
 - Efficient veto detectors
 - Particle ID
 - Precise timing

- Expected acceptance O (10%)

NA62 high-intensity kaon beam

- SPS primary proton beam @ 400 GeV/c
- Protons on target: 3×10^{12} / pulse
- Duty cycle ~ 0.3
- Simultaneous delivery to LHC
- Secondary charged beam 75 GeV/c
 - To optimize kaon production
- Momentum bite 1%
- X,Y divergence < 100 μrad
- Size @ beam tracker: $6.0 \times 2.7 \text{ cm}^2$
- Rate @ beam tracker: 750 MHz
- 6% K⁺ (others: 70% π⁺, 24%proton)
- Rate downstream 10 MHz (mainly K⁺ decay)
- K decay rates: 4.5×10^{12} /year
 - In a 60 m decay volume
 - 10⁻⁶ mbar vacuum

The NA62 detector

 $\leftarrow \quad \text{Beam detectors} \quad \rightarrow \leftarrow$

Decay products detectors

The NA62 detector

Where we are now

• Beam line, detectors, trigger and DAQ commissioned

• Data taking

- 2014: detector commissioning
- 2015: trigger commissioning, beam line commissioning up to the nominal intensity, detector performance studies
- 2016: high level software trigger commissioning, full commissioning of the beam tracker, physics data taking on-going

• Data samples

- 2015: Low intensity, minimum bias trigger for detector performance studies
- 2016: $\pi^+ v \overline{v}$ and not $\pi^+ v \overline{v}$ (exotics) data up to 40% intensity

Guiding principles for the detectors

- Good tracking devices
 - Accurate measurement of the kaon momentum
 - Accurate measurement of the pion momentum
 - Missing mass cut: O(10⁵) rejection factor on $K_{\mu 2},$ O(10⁴) on $K_{\pi 2}$
- Veto detectors
 - For photons to reduce the background by a factor of 10^8
 - For muons add a rejection factor of $O(10^5)$
- Particle identification
 - Identify kaons in the beam
 - Identify positrons
 - Additional π/μ rejection [O(10²)]
- Precise sub-ns timing
 - To associate in time the kaon with the decay products
 - To reduce random veto

The measurement

•Signature: one incident kaon, 1 charged output track •Missing mass distributions: $m_{miss}^2 = (P_K - P_{track(hyp \pi^+)})^2$ •Define two regions in m_{miss}^2 to accept candidate events

• 65 m long decay fiducial region, 15< PT< 35 GeV/c

NA62 Sensitivity & background rejection

Decay	event/year
K ⁺ → π ⁺ νν [SM] (flux 4.5×10 ¹²)	45
$K^+ \rightarrow \pi^+ \pi^0$	5
$K^+ \rightarrow \mu^+ \nu$	1
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	< 1
Other 3 tracks decays	< 1
$K^+ \rightarrow \pi^+ \pi^0 \gamma$ (IB)	1.5
Κ ⁺→μ⁺νγ (IB)	0.5
$K^+ \rightarrow \pi^0 e^+(\mu^+) v$, others	< 1
Total background	< 10

Kaon identification

Use one-track selection:

Single track downstream, with matching energy in the calorimeters and matching a beam track Kaon ID:

Signal in the Kaon ID matching a beam track Decay vertex in the 65 m fiducial region Time resolution close to design:

Kaon ID < 100 ps Beam tracking < 200 ps Decay track < 200 ps Calorimeters <2 ns

Kinematics

- Tracking uses Si pixels (GigaTracker) for the beam, straw tubes in vacuum + magnet for decay products
- $P\pi < 35$ GeV/c for optimal $K_{\mu 2}$ rejection
- Resolution and kinematic suppression factor measured using K^+ $\!\!\!\to\!\!\pi^+\pi^0$ selected with the LKr calorimeter
- Resolution close to the design, measured suppression factor O(10³), prospect to reach the design figure with 2016 data

Beam tracker (Gigatracker)

3 Si pixel station on the beam, each 0.5% X_0 300 x 300 μm^2 pixels, ~54000 pixels

TDC readout chip on-sensor Cooling using microchannel technique Completely commissioned in 2016

Measured performance in line with the design: $\sigma(t_{\text{beam track}}) < 200 \text{ ps}$

Decay products PID

- Particle identification using RICH and calorimeters
- Suppress mainly $K_{\mu 2}$ with $O(10^7) \pi/\mu$ separation
- $15 < P\pi < 35$ GeV/c for the best separation
- Evaluate suppression with clean samples of pion and muons
 - RICH: $O(10^2) \pi/\mu$ separation, 80%(90%) efficiency 2015 (2016)
 - Calorimeters: (10⁴-10⁶) μ suppression, (90%-40%) π^{*} efficiency with cut analysis. Work going on for improvements

Photon rejection

- + Use EM calorimeters exploiting correlations between γs from π^0
- Hermetic coverage up to 50 mrad
- Goal: O(10⁸) π^0 rejection from $K^+ \rightarrow \pi^+\pi^0$
 - Thanks to the cut $P_{\pi}\,{<}35~\text{Gev}\rightarrow E_{\pi0}\,{>}40~\text{Gev}$
- Kinematical selection of $\pi^+\pi^0$ decays to measure rejection
- O(10⁶) obtained with 2015 data, but statistically limited
- 2016 data already enough to address the O(10⁸) level.

Not only $\pi v \overline{v}$

- Standard kaon physics
 - ChPT studies: K⁺ $\rightarrow \pi^+ \gamma \gamma$, K⁺ $\rightarrow \pi^+ \pi^0 e^+ e^-$, K $_{\ell 4}$
 - Precision test of lepton universality: $R_{K}=\Gamma(K \rightarrow ev(\gamma))/\Gamma(K \rightarrow \mu v(\gamma))$
- Searches for lepton-flavor or -number violating decays
 - $K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} \, \mu e$, $K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle -} \, \mu^{\scriptscriptstyle +} e^{\scriptscriptstyle +}$, $K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle -} \, \ell^{\scriptscriptstyle +} \ell^{\scriptscriptstyle +}$
- Search for heavy neutrinos
 - $K^{+} \rightarrow \ell^{+} v_{h}$ (inclusive)
 - v_h from upstream K, D decays with $v_h \rightarrow \pi \ell$
- Search for heavy neutral leptons
- Search for long-lived dark sector particles
 - Dark photon γ produced in π/ρ decays in target with $\gamma \rightarrow \ell^+ \ell^+$
 - Axion-like particle A⁰ produced in target/beam dump, with A⁰ $\rightarrow \gamma \gamma$
- π^0 decays
 - $\pi^0 \rightarrow \text{invisible}; \pi^0 \rightarrow 3\gamma, 4\gamma; \pi^0 \rightarrow \gamma\gamma$

An example: $K^+ \rightarrow \pi \mu \mu$

- Kaon physics: BR, form factors, charge asymmetry, FB asymmetry
- $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$: Lepton number violation
 - Possible if the neutrino is a Majorana particle

An example: Heavy neutral leptons

- Heavy neutral leptons in $K^+ \rightarrow \ell^+ N$
- Can also search for HNL in $K^{\scriptscriptstyle +}\!\to\ell^{\scriptscriptstyle +}\,N$ where N does not decay inside the detector fiducial volume
- $K^{\scriptscriptstyle +}\!\to\ell^{\scriptscriptstyle +}\,N$ events would appear as peaks in the $K^{\scriptscriptstyle +}\!\to\ell^{\scriptscriptstyle +}\,v$ squared missing mass distribution
- Searches are model independent

Prospect for the future - Run 3

- With minimal/no upgrades of the present K⁺ beam and detector
 - LFV/LNV high-sensitivity studies
 - $K^+ \rightarrow \pi^+ \mu e, K^+ \rightarrow \pi^- \mu^+ e^+, K^+ \rightarrow \pi^- e^+ e^+, K^+ \rightarrow \pi^- \mu^+ \mu^+$
 - ultra-rare/forbidden π^0 decays
 - μe, 3γ, 4γ, ee, eeee
- Year-long run in "beam-dump" mode
 - searches for MeV-GeV mass hidden-sector candidates
 - Dark photons
 - Heavy neutral leptons
 - Axion like particles, etc.

Prospect for the future - Run 4

• KLEVER: $K_L \rightarrow \pi^0 v \overline{v}$ at the SPS

- A design study for an experiment to measure $K_L \to \pi^0 v \bar{v}~$ at the CERN SPS
- High-energy experiment: complementary approach to KOTO
- Photons from K_L decays boosted forward
- Makes photon vetoing easier veto coverage only out to 100 mrad
- Possibility to re-use LKr calorimeter and the NA62 experimental infrastructure
- The study has been presented at the CERN workshop "Physics beyond collider" in September 2016 and has been well received

$K_L \to \pi^0 \nu \overline{\nu}$ at the SPS

- Many issues/questions raised by the study
 - Need for 3 $10^{13}\ K_L$ decays for 100 events
 - 10¹⁹ pot/year on 5 years -> 2 10¹³ ppp (6x NA62 intensity)
 - Beam and experimental area need major upgrade
 - Fiducial volume similar to NA62
 - Active final collimator to veto upstream decays
 - New and many more large angle vetoes (100 mrad)
 - Small Angle vetoes insensitive to 3 GHz of beam neutrons
 - Charged vetoes in front of the LKr calorimeter
 - Optimize LKr efficiency and two cluster separation
 - Following NA62 experience, need to have electronics with a better behavior in radiation areas
 - Expected to have 60 SM events with S/B=1
 - Background studies still going on

Conclusions

- NA62 is taking data with the complete detector since 2015
- The data analysis up to now shows that the detector is behaving as expected and with the latest data we can address a sensitivity of less than 10⁻⁹ for K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$
- Data for exotics decays are being collected in parallel
- Data taking will continue at least up to LS2
- Plans are being prepared for Run 3 to study various types of exotic decays
- A preliminary study has been performed to assess the possibility to setup a detector for $K^0\to\pi^0\,\nu\overline{\nu}$ in Run 4

